OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24147–24158

Robust holographic storage system design

Takahiro Watanabe and Minoru Watanabe  »View Author Affiliations


Optics Express, Vol. 19, Issue 24, pp. 24147-24158 (2011)
http://dx.doi.org/10.1364/OE.19.024147


View Full Text Article

Enhanced HTML    Acrobat PDF (1689 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Demand is increasing daily for large data storage systems that are useful for applications in spacecraft, space satellites, and space robots, which are all exposed to radiation-rich space environment. As candidates for use in space embedded systems, holographic storage systems are promising because they can easily provided the demanded large-storage capability. Particularly, holographic storage systems, which have no rotation mechanism, are demanded because they are virtually maintenance-free. Although a holographic memory itself is an extremely robust device even in a space radiation environment, its associated lasers and drive circuit devices are vulnerable. Such vulnerabilities sometimes engendered severe problems that prevent reading of all contents of the holographic memory, which is a turn-off failure mode of a laser array. This paper therefore presents a proposal for a recovery method for the turn-off failure mode of a laser array on a holographic storage system, and describes results of an experimental demonstration.

© 2011 OSA

OCIS Codes
(210.0210) Optical data storage : Optical data storage
(210.2860) Optical data storage : Holographic and volume memories
(210.4965) Optical data storage : Parallel readout

ToC Category:
Optical Data Storage

History
Original Manuscript: July 5, 2011
Revised Manuscript: October 7, 2011
Manuscript Accepted: October 23, 2011
Published: November 11, 2011

Citation
Takahiro Watanabe and Minoru Watanabe, "Robust holographic storage system design," Opt. Express 19, 24147-24158 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-24-24147


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Kuninaka and J. Kawaguchi, “Lessons learned from round trip of Hayabusa asteroid explorer in deep space,” IEEE Aerospace Conference, 1–8 (2011).
  2. P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt.2, 393–400 (1963). [CrossRef]
  3. A. Pu and D. Psaltis, “Holographic data storage with 100 bits/μm2 density,” Optical Data Storage Topical Meeting Conference Digest, 48–49 (1997). [CrossRef]
  4. G. W. Burr, C. M. Jefferson, H. Coufal, C. Gollasch, M. Jurich, J. A. Hoffnagle, R. Macfarlane, and R. M. Shelby, “Volume holographic data storage at an areal density of 100 Gbit/in2,” Conference on Lasers and Electro-Optics, 188–189 (2000).
  5. N. Butt, K. Mcstay, A. Cestero, H. Ho, W. Kong, S. Fang, R. Krishnan, B. Khan, A. Tessier, W. Davies, S. Lee, Y. Zhang, J. Johnson, S. Rombawa, R. Takalkar, A. Blauberg, K. V. Hawkins, J. Liu, S. Rosenblatt, P. Goyal, S. Gupta, J. Ervin, Z. Li, S. Galis, J. Barth, M. Yin, T. Weaver, J. H. Li, S. Narasimha, P. Parries, W. K. Henson, N. Robson, T. Kirihata, M. Chudzik, E. Maciejewski, P. Agnello, S. Stiffler, and S. S. Iyer, “A 0.039 μm2 High Performance eDRAM Cell based on 32nm High-K/Metal SOI Technology,” IEEE International Electron Devices Meeting, 27.5.1 – 27.5.4 (2010).
  6. M. Toishi, A. Okamoto, S. Honma, and M. Bunsen, “Fault-tolerant holographic memory with two photrefractive crystals,” Pacific Rim Conference on Lasers and Electro-Optics, 2, 160–161 (2001).
  7. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, “Holographic Data Storage,” Springer-Verlag, 7 (2000).
  8. S. Redant, R. Marec, L. Baguena, E. Liegeon, J. Soucarre, B. Van Thielen, G. Beeckman, P. Ribeiro, A. Fernandez-Leon, and B. Glass, “Radiation Test Results on First Silicon in the Design Against Radiation Effects (DARE) Library,” IEEE Trans. Nucl. Sci.52(5), 1550–1554 (2005). [CrossRef]
  9. A. Makihara, Y. Sakaide, Y. Tsuchiya, T. Arimitsu, H. Asai, Y. Iide, H. Shindou, S. Kuboyama, and S. Matsuda, “Single-Event Effects in 0.18 um CMOS Commercial Processes,” IEEE Trans. Nucl. Sci.50(6), 2135–2138 (2003). [CrossRef]
  10. J. D. Black, D. R. Ball, W. H. Robinson, D. M. Fleetwood, R. D. Schrimpf, R. A. Reed, D. A. Black, K. M. Warren, A. D. Tipton, P. E. Dodd, N. F. Haddad, M. A. Xapsos, H. S. Kim, and M. Friendlich, “Characterizing SRAM Single Event Upset in Terms of Single and Multiple Node Charge Collection,” IEEE Trans. Nucl. Sci.55, 2943–2947 (2008). [CrossRef]
  11. M. Tsinberg and C. Eggers, “DVD technology,” International Conference on Image Processing, 1, 2 (1998).
  12. J. Hellmig, A. Mijiritskii, H. J. Borg, P. Vromans, and K. Musialkova, “Dual-layer Blu-ray Disc based on fast-growth phase-change materials,” International Symposium on Optical Memory and Optical Data Storage Topical Meeting, 407–409 (2002). [CrossRef]
  13. P. J. Marchand and P. Ambs, “Developing a parallel-readout optical-disk system,” IEEE Micro14, 20–27 (1994). [CrossRef]
  14. E. Chuang, L. Wenhai, J. P. Drolet, and D. Psaltis, “Holographic random access memory (HRAM),” Proc. of the IEEE87, 1931–1940 (1999). [CrossRef]
  15. S. S. Orlov, E. Bjornson, W. Phillips, Y. Takashima, X. Li, and L. Hesselink, “High transfer rate (1 Gbit/sec) high-capacity holographic disk digital data storage system,” Conference on Lasers and Electro-Optics, 190–191 (2000).
  16. H. Horimai and X. Tan, “Holographic Information Storage System: Today and Future,” IEEE Trans. Magn.43, 943–947 (2007). [CrossRef]
  17. J. Hong, J. Ma, T. Chang, I. McMichael, W. Christian, and D. Pletcher, “Holographic memory for fast data access,” IEEE Lasers and Electro-Optics Society Annual Meeting, 1, 160–161 (1996).
  18. E. Chuang, J. J. Drolet, G. Barbastathis, and D. Psaltis, “Compact lens-less holographic memory,” Optical Data Storage Topical Meeting Conference Digest, 50–51 (1997). [CrossRef]
  19. F. B. McCormick, “Optical MEMS potentials in optical storage,” IEEE/LEOS Summer Topical Meetings, II/5–II/6 (1998).
  20. E. G. PAEK, “Microlaser Arrays for Optical Information Processing,” Optics and Photonics News, 4, 16–23 (1993). [CrossRef]
  21. H. J. Yoon, N. J. Chung, M. H. Choi, I. S. Park, and J. Jeong, “Estimation of system reliability for uncooled optical transmitters using system reliability function,” J. Lightwave Tech.17, 1067–1071 (1999). [CrossRef]
  22. J. W. Tomm, A. Barwolff, R. Puchert, A. Jaeger, C. Lienau, and T. Elsaesser, “Heating of high-power laser diode arrays: from temperature data to power management and failure mechanisms,” Conference on Lasers and Electro-Optics, 240–241 (1998).
  23. C. E. Stroud, “Reliability of Majority Voting Based VLSI Fault-Tolerant Circuits,” IEEE Trans. VLSI Syst.2(4), 516–521 (1994). [CrossRef]
  24. M. Radu, D. Pitica, and C. Posteuca, “Reliability and failure analysis of voting circuits in hardware redundant design,” International Symposium on Electronic Materials and Packaging, 421–423 (2000).
  25. Yan Lin and Lei He, “Device and architecture concurrent optimization for FPGA transient soft error rate,” International Conference on Computer-Aided Design, 194–198 (2007). [CrossRef]
  26. M. Nakajima and M. Watanabe, “Optical buffering technique under space radiation environment,” Opt. Lett.34, 3719–3721 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited