OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24182–24197

Optimally designed narrowband guided-mode resonance reflectance filters for mid-infrared spectroscopy

Jui-Nung Liu, Matthew V. Schulmerich, Rohit Bhargava, and Brian T. Cunningham  »View Author Affiliations


Optics Express, Vol. 19, Issue 24, pp. 24182-24197 (2011)
http://dx.doi.org/10.1364/OE.19.024182


View Full Text Article

Enhanced HTML    Acrobat PDF (3107 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An alternative to the well-established Fourier transform infrared (FT-IR) spectrometry, termed discrete frequency infrared (DFIR) spectrometry, has recently been proposed. This approach uses narrowband mid-infrared reflectance filters based on guided-mode resonance (GMR) in waveguide gratings, but filters designed and fabricated have not attained the spectral selectivity (≤ 32 cm−1) commonly employed for measurements of condensed matter using FT-IR spectroscopy. With the incorporation of dispersion and optical absorption of materials, we present here optimal design of double-layer surface-relief silicon nitride-based GMR filters in the mid-IR for various narrow bandwidths below 32 cm−1. Both shift of the filter resonance wavelengths arising from the dispersion effect and reduction of peak reflection efficiency and electric field enhancement due to the absorption effect show that the optical characteristics of materials must be taken into consideration rigorously for accurate design of narrowband GMR filters. By incorporating considerations for background reflections, the optimally designed GMR filters can have bandwidth narrower than the designed filter by the antireflection equivalence method based on the same index modulation magnitude, without sacrificing low sideband reflections near resonance. The reported work will enable use of GMR filters-based instrumentation for common measurements of condensed matter, including tissues and polymer samples.

© 2011 OSA

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1970) Diffraction and gratings : Diffractive optics
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6340) Spectroscopy : Spectroscopy, infrared
(310.0310) Thin films : Thin films
(310.2790) Thin films : Guided waves

ToC Category:
Spectroscopy

History
Original Manuscript: September 1, 2011
Revised Manuscript: October 27, 2011
Manuscript Accepted: October 31, 2011
Published: November 11, 2011

Citation
Jui-Nung Liu, Matthew V. Schulmerich, Rohit Bhargava, and Brian T. Cunningham, "Optimally designed narrowband guided-mode resonance reflectance filters for mid-infrared spectroscopy," Opt. Express 19, 24182-24197 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-24-24182


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun.55(6), 377–380 (1985). [CrossRef]
  2. H. Bertoni, L. Cheo, and T. Tamir, “Frequency-selective reflection and transmission by a periodic dielectric layer,” IEEE Trans. Antenn. Propag.37(1), 78–83 (1989). [CrossRef]
  3. M. T. Gale, K. Knop, and R. H. Morf, Proc. Soc. Photo Opt. Instrum. Eng.1210, 83 (1990).
  4. B. T. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem.81(2-3), 316–328 (2002). [CrossRef]
  5. B. T. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem.85(3), 219–226 (2002). [CrossRef]
  6. L. L. Chan, M. F. Pineda, J. T. Heeres, P. J. Hergenrother, and B. T. Cunningham, “A General Method for Discovering Inhibitors of Protein-DNA Interactions using Photonic Crystal Biosensors,” ACS Chem. Biol.3(7), 437–448 (2008). [CrossRef] [PubMed]
  7. P. C. Mathias, N. Ganesh, W. Zhang, and B. T. Cunningham, “Graded Wavelength One-Dimensional Photonic Crystal Reveals Spectral Characteristics of Enhanced Fluorescence,” J. Appl. Phys.103(9), 094320 (2008). [CrossRef]
  8. P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Employing two distinct photonic crystal resonances for improved fluorescence enhancement,” Appl. Phys. Lett.95(2), 021111 (2009). [CrossRef]
  9. A. Pokhriyal, M. Lu, V. Chaudhery, C.-S. Huang, S. Schulz, and B. T. Cunningham, “Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection,” Opt. Express18(24), 24793–24808 (2010). [CrossRef] [PubMed]
  10. F. Yang, G. Yen, and B. T. Cunningham, “Integrated 2D photonic crystal stack filter fabricated using nanoreplica molding,” Opt. Express18(11), 11846–11858 (2010). [CrossRef] [PubMed]
  11. G. Niederer, H. P. Herzig, J. Shamir, H. Thiele, M. Schnieper, and C. Zschokke, “Tunable, Oblique Incidence Resonant Grating Filter for Telecommunications,” Appl. Opt.43(8), 1683–1694 (2004). [CrossRef] [PubMed]
  12. S. T. Thurman and G. M. Morris, “Controlling the Spectral Response in Guided-Mode Resonance Filter Design,” Appl. Opt.42(16), 3225–3233 (2003). [CrossRef] [PubMed]
  13. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A12(5), 1068–1076 (1995). [CrossRef]
  14. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A12(5), 1077–1086 (1995). [CrossRef]
  15. D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, “Thin-film optical filters with diffractive elements and waveguides,” Opt. Eng.37(9), 2634–2646 (1998). [CrossRef]
  16. Z. Hegedus and R. Netterfield, “Low Sideband Guided-Mode Resonant Filter,” Appl. Opt.39(10), 1469–1473 (2000). [CrossRef] [PubMed]
  17. S. Tibuleac and R. Magnusson, “Narrow-linewidth bandpass filters with diffractive thin-film layers,” Opt. Lett.26(9), 584–586 (2001). [CrossRef] [PubMed]
  18. G. Bao and K. Huang, “Optimal design of guided-mode grating resonance filters,” IEEE Photon. Technol. Lett.16(1), 141–143 (2004). [CrossRef]
  19. G. Bao and K. Huang, “Computational design for guided-mode grating resonances,” J. Opt. Soc. Am. A22(7), 1408–1413 (2005). [CrossRef] [PubMed]
  20. W. Liu, Z. Lai, H. Guo, and Y. Liu, “Guided-mode resonance filters with shallow grating,” Opt. Lett.35(6), 865–867 (2010). [CrossRef] [PubMed]
  21. D. C. Fernandez, R. Bhargava, S. M. Hewitt, and I. W. Levin, “Infrared spectroscopic imaging for histopathologic recognition,” Nat. Biotechnol.23(4), 469–474 (2005). [CrossRef] [PubMed]
  22. R. Bhargava, “Towards a practical Fourier transform infrared chemical imaging protocol for cancer histopathology,” Anal. Bioanal. Chem.389(4), 1155–1169 (2007). [CrossRef] [PubMed]
  23. A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem.82(13), 5697–5706 (2010). [CrossRef] [PubMed]
  24. R. Bhargava, D. C. Fernandez, S. M. Hewitt, and I. W. Levin, “High throughput assessment of cells and tissues: Bayesian classification of spectral metrics from infrared vibrational spectroscopic imaging data,” Biochim. Biophys. Acta1758(7), 830–845 (2006). [CrossRef] [PubMed]
  25. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt.32(14), 2606–2613 (1993). [CrossRef] [PubMed]
  26. S. S. Wang and R. Magnusson, “Design of waveguide-grating filters with symmetrical line shapes and low sidebands,” Opt. Lett.19(12), 919–921 (1994). [CrossRef] [PubMed]
  27. A. Sharon, D. Rosenblatt, and A. A. Friesem, “Resonant grating–waveguide structures for visible and near-infrared radiation,” J. Opt. Soc. Am. A14(11), 2985–2993 (1997). [CrossRef]
  28. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron.33(11), 2038–2059 (1997). [CrossRef]
  29. S. L. Chuang, Physics of Optoelectronic Devices (Wiley, New York, 1995).
  30. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford U. Press, New York, 2007).
  31. M. Klanjšek Gunde and M. Maček, “Infrared Optical Constants and Dielectric Response Functions of Silicon Nitride and Oxynitride Films,” Phys. Status Solidi183, 439–449 (2001). [CrossRef]
  32. M. Rubin, “Optical properties of soda lime silica glasses,” Sol. Energy Mater.12(4), 275–288 (1985). [CrossRef]
  33. S. M. Norton, G. M. Morris, and T. Erdogan, “Experimental investigation of resonant-grating filter lineshapes in comparison with theoretical models,” J. Opt. Soc. Am. A15(2), 464–472 (1998). [CrossRef]
  34. T. Sun, J. Wang, J. Ma, Y. Jin, H. He, J. Shao, and Z. Fan, “Ultra-narrow bandwidth resonant reflection grating filters using the second diffracted orders,” Opt. Commun.282(4), 451–454 (2009). [CrossRef]
  35. T. Sun, J. Ma, J. Wang, Y. Jin, H. He, J. Shao, and Z. Fan, “Electric field distribution in resonant reflection filters under normal incidence,” J. Opt. A, Pure Appl. Opt.10(12), 125003 (2008). [CrossRef]
  36. J. N. Liu, M. Schulmerich, R. Bhargava, and B. T. Cunningham, University of Illinois at Urbana-Champaign, Urbana, IL are preparing a manuscript to be called “Effects of collimation on narrowband guided-mode resonance filters in mid-infrared,”
  37. S. S. Wang and R. Magnusson, “Multilayer waveguide-grating filters,” Appl. Opt.34(14), 2414–2420 (1995). [CrossRef] [PubMed]
  38. A. L. Fehrembach, A. Talneau, O. Boyko, F. Lemarchand, and A. Sentenac, “Experimental demonstration of a narrowband, angular tolerant, polarization independent, doubly periodic resonant grating filter,” Opt. Lett.32(15), 2269–2271 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited