OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24210–24218

Design of a birefringent Michelson interferometer-based interleaver with ultra-low dispersion and low cost

Haocheng Hu, Baozhong Zheng, Qingming Liu, Yang Li, Li Wu, and Shijie Gu  »View Author Affiliations

Optics Express, Vol. 19, Issue 24, pp. 24210-24218 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1008 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We design and demonstrate a birefringent Michelson interferometer based interleaver with ultra-low dispersion and low cost. The interleaver consists of polarizing beam splitters (PBS’s) and quarter-wave plates and half-wave plates. The PBS’s based Michelson interferometers provide the optical path difference for interference between the two orthogonal polarization components and the half-wave plates provide the birefringent needed to minimize ripple of output. The designed interleaver with two-stage interferometer in a 50 GHz channel spacing application exhibits a 0.5 dB passband and a 25 dB stopband both 27GHz; a channel isolation higher than 35 dB and chromatic dispersion less than ±5 ps/nm within 0.5 dB passband; 1.3 dB insertion loss and 0.3 dB PDL; 0.04GHz/°C thermal stability. Since all of the optical components can be optically bonded together, the device is robust and easy to be aligned, which reduces labor cost.

© 2011 OSA

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.2340) Fiber optics and optical communications : Fiber optics components
(350.2460) Other areas of optics : Filters, interference

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 29, 2011
Revised Manuscript: September 17, 2011
Manuscript Accepted: October 27, 2011
Published: November 11, 2011

Haocheng Hu, Baozhong Zheng, Qingming Liu, Yang Li, Li Wu, and Shijie Gu, "Design of a birefringent Michelson interferometer-based interleaver with ultra-low dispersion and low cost," Opt. Express 19, 24210-24218 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Li, Q. Guo, and S. Gu, “Interleaver technology review,” Proc. SPIE 4906, 73–80 (2002). [CrossRef]
  2. S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K. Y. Wu, and P. Xie, “Interleaver technology: comparisons and applications requirements,” in Optical Fiber Conference ’ 03 Interleaver Workshop, pp. 1–9.
  3. L.-W. Luo, S. Ibrahim, A. Nitkowski, Z. Ding, C. B. Poitras, S. J. Ben Yoo, and M. Lipson, “High bandwidth on-chip silicon photonic interleaver,” Opt. Express 18(22), 23079–23087 (2010). [CrossRef] [PubMed]
  4. T. Chiba, H. Arai, K. Ohira, H. Nonen, H. Okano and H. Uetsuka., “Novel architecture of wavelength interleaving filter with Fourier transform-based MZIs,” in Optical Fiber Communication Conference, 2001 OSA Technical Digest Series (Optical Society of America, 2001), paper WB5.
  5. Q. J. Wang, Y. Zhang, and Y. C. Soh, “All-fiber 3×3 interleaver design with flat-top passband,” IEEE Photon. Technol. Lett. 16(1), 168–170 (2004). [CrossRef]
  6. H. W. Lu, B. G. Zhang, M. Z. Li, and G. W. Luo, “A novel all-fiber optical interleaver with flat-top passband,” IEEE Photon. Technol. Lett. 18(13), 1469–1471 (2006). [CrossRef]
  7. S. G. Heris, A. Zarifkar, K. Abedi, and M. K. M. Farshi, “Interleavers/deinterleavers based on Michelson- Gires-Tournois interferometers with different structures,” in IEEE International Conference on Semiconductor Electronics, 2004. ICSE 2004, (IEEE, 2004), Vols. 7–9, pp. 573–576.
  8. S. Cao, C. Lin, C. Yang, E. Ning, J. Zhao, and G. Barbarossa, “ Birefringent Gires-Tournois interferometer (BGTI) for DWDM interleaving,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper ThC3.
  9. B. B. Dingel and M. Izutsu, “Multifunction optical filter with a Michelson-Gires-Tournois interferometer for wavelength-division-multiplexed network system applications,” Opt. Lett. 23(14), 1099–1101 (1998). [CrossRef] [PubMed]
  10. C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, “Flat-top and low-dispersion interleavers using Gires–Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” Opt. Commun. 237(4-6), 285–293 (2004). [CrossRef]
  11. J. Zhang and X. Yang, “Universal Michelson Gires-Tournois interferometer optical interleaver based on digital signal processing,” Opt. Express 18(5), 5075–5088 (2010). [CrossRef] [PubMed]
  12. L. Wei and J. W. Y. Lit, “Design optimization of flattop interleaver and its dispersion compensation,” Opt. Express 15(10), 6439–6457 (2007). [CrossRef] [PubMed]
  13. C.-H. Hsieh, R. Wang, I. McMichael, P. Yeh, C.-W. Lee, W.-H. Cheng, and Z. J. Wen, “Flat-top interleavers using two Gires-Tournois etalons as phase-dispersion mirrors in a Michelson interferometer,” IEEE Photon. Technol. Lett. 15(2), 242–244 (2003). [CrossRef]
  14. C. W. Lee, R. Wang, P. Yeh, C. H. Hsieh, and W. H. Cheng, “Birefringent interleaver with a ring cavity as a phase-dispersion element,” Opt. Lett. 30(10), 1102–1104 (2005). [CrossRef] [PubMed]
  15. Optolex Corporation, “Part number for interleavers with channel center not aligned with ITU grid,” http://www.optoplex.com/download/Optical_Interleaver.pdf
  16. A. Yariv and P. Yeh, Optical Waves in Crystal (Wiley, New York, 1990), pp.124, 219.
  17. J. Zhang, L. Liu, Y. Zhou, and C. Zhou, “Flattening spectral transmittance of birefringent interleaver filter,” J. Mod. Opt. 50, 2031–2041 (2003).
  18. A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals & Systems, 2nd ed. (Prentice Hall, Englewood Cliffs, NJ, 1997).
  19. A. Zeng, X. Ye, I. Chon, and F. Liang, “25 GHz interleavers with ultra-low chromatic dispersion,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper ThC4.
  20. S. Gu, “Tuning and temperature compensation of the air-gap etalon for dense wavelength-division multiplexing application,” U.S. Patent 6,606,182 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited