OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24219–24227

A subwavelength slit as a quarter-wave retarder

Philip F. Chimento, Nikolay V. Kuzmin, Johan Bosman, Paul F. A. Alkemade, Gert W. ’t Hooft, and Eric R. Eliel  »View Author Affiliations


Optics Express, Vol. 19, Issue 24, pp. 24219-24227 (2011)
http://dx.doi.org/10.1364/OE.19.024219


View Full Text Article

Enhanced HTML    Acrobat PDF (835 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have experimentally studied the polarization-dependent transmission properties of a nanoslit in a gold film as a function of its width. The slit exhibits strong birefringence and dichroism. We find, surprisingly, that the transmission of the polarization parallel to the slit only disappears when the slit is much narrower than half a wavelength, while the transmission of the perpendicular component is reduced by the excitation of surface plasmons. We exploit the slit’s dichroism and birefringence to realize a quarter-wave retarder.

© 2011 OSA

OCIS Codes
(050.1930) Diffraction and gratings : Dichroism
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(260.1440) Physical optics : Birefringence
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: September 16, 2011
Revised Manuscript: October 28, 2011
Manuscript Accepted: November 2, 2011
Published: November 14, 2011

Citation
Philip F. Chimento, Nikolay V. Kuzmin, Johan Bosman, Paul F. A. Alkemade, Gert W. ’t Hooft, and Eric R. Eliel, "A subwavelength slit as a quarter-wave retarder," Opt. Express 19, 24219-24227 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-24-24219


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Lord Rayleigh, “On the passage of waves through apertures in plane screens, and allied problems,” Philos. Mag.43, 259–272 (1897).
  2. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev.66, 163–182 (1944). [CrossRef]
  3. C. J. Bouwkamp, “Diffraction theory,” Rep. Prog. Phys.17, 35–100 (1954). [CrossRef]
  4. R. V. Jones and J. C. S. Richards, “The polarization of light by narrow slits,” Proc. R. Soc. London A225, 122–135 (1954). [CrossRef]
  5. G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, and K. Schouhamer Immink, Principles of Optical Disk Systems (Adam Hilger Ltd., Bristol, 1985).
  6. M. H. Fizeau, “Recherches sur plusieurs phénomènes relatifs à la polarisation de la lumière,” Annal. Chim. Phys.63, 385 (1861).
  7. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London)391, 667–669 (1998). [CrossRef]
  8. S. Astilean, P. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun.175, 265–273 (2000). [CrossRef]
  9. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett.86, 5601 (2001). [CrossRef] [PubMed]
  10. F. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev. Lett.89, 063901 (2002). [CrossRef] [PubMed]
  11. J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett.92, 147401 (2004). [CrossRef] [PubMed]
  12. H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E67, 036608 (2003). [CrossRef]
  13. H. F. Schouten, T. D. Visser, G. Gbur, D. Lenstra, and H. Blok, “The diffraction of light by narrow slits in plates of different materials,” J. Opt. A6, S277–S280 (2004). [CrossRef]
  14. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett.94, 053901 (2005). [CrossRef] [PubMed]
  15. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Approximate model for surface-plasmon generation at slit apertures,” J. Opt. Soc. Am. A23, 1608–1615 (2006). [CrossRef]
  16. A.-L. Baudrion, F. de León-Pérez, O. Mahboub, A. Hohenau, H. Ditlbacher, F. J. García-Vidal, J. Dintinger, T. W. Ebbesen, L. Martín-Moreno, and J. R. Krenn, “Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film,” Opt. Express16, 3420–3429 (2008). [CrossRef] [PubMed]
  17. H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett.92, 051115 (2008). [CrossRef]
  18. A. M. Nugrowati, S. F. Pereira, and A. S. van de Nes, “Near and intermediate fields of an ultrashort pulse transmitted through Young’s double-slit experiment,” Phys. Rev. A77, 053810 (2008). [CrossRef]
  19. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).
  20. E. H. Khoo, E. P. Li, and K. B. Crozier, “Plasmonic wave plate based on subwavelength nanoslits,” Opt. Lett.36, 2498–2500 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited