OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24268–24279

Activated polarization pulling and de-correlation of signal and pump states of polarization in a fiber Raman amplifier

Sergey V. Sergeyev  »View Author Affiliations

Optics Express, Vol. 19, Issue 24, pp. 24268-24279 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2124 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a theoretical study of activated polarization pulling and de-correlation of signal and pump states of polarization based on an advanced vector model of a fiber Raman amplifier accounting for random birefringence and two-scale fiber spinning. As a result, we have found that it is possible to provide de-correlation and simultaneously suppress PDG and PMD to 1.2 dB and 0.035 ps/km1/2 respectively.

© 2011 OSA

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.5650) Nonlinear optics : Raman effect

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 31, 2011
Revised Manuscript: September 21, 2011
Manuscript Accepted: September 23, 2011
Published: November 14, 2011

Sergey V. Sergeyev, "Activated polarization pulling and de-correlation of signal and pump states of polarization in a fiber Raman amplifier," Opt. Express 19, 24268-24279 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. D. Poole and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibers,” Electron. Lett. 22(19), 1029–1030 (1986). [CrossRef]
  2. P. K. A. Wai and C. R. Menyuk, “Polarization mode dispersion, decorrelation and diffusion in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 14(2), 148–157 (1996). [CrossRef]
  3. R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quantum Electron. 15(10), 1157–1160 (1979). [CrossRef]
  4. Q. Lin and G. P. Agrawal, “Vector theory of stimulated Raman scattering and its application to fiber-based Raman amplifiers,” J. Opt. Soc. Am. B 20(8), 1616–1631 (2003). [CrossRef]
  5. S. Sergeyev, S. Popov, and A. T. Friberg, “Spun fiber Raman amplifiers with reduced polarization impairments,” Opt. Express 16(19), 14380–14389 (2008). [CrossRef] [PubMed]
  6. S. Sergeyev, S. Popov, and A. T. Friberg, “Virtually isotropic transmission media with fiber Raman amplifier,” IEEE J. Quantum Electron. 46(10), 1492–1497 (2010). [CrossRef]
  7. S. Sergeyev and S. Popov, “Two-section fiber optic Raman polarizer for high-speed transmission systems,” in the 13th International Conference on Transparent Optical Networks (June 26–30, 2011) Stockholm, Sweden, Th.A6.7.
  8. M. J. Li and D. A. Nolan, “Fiber spin-profile designs for producing fibers with low polarization mode dispersion,” Opt. Lett. 23(21), 1659–1661 (1998). [CrossRef] [PubMed]
  9. A. Galtarossa, L. Palmieri, A. Pizzinat, B. S. Marks, and C. R. Menyuk, “An analytical formula for the mean differential group delay of randomly-birefringent spun fibers,” J. Lightwave Technol. 21(7), 1635–1643 (2003). [CrossRef]
  10. M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express 17(2), 947–955 (2009). [CrossRef] [PubMed]
  11. V. V. Kozlov, J. Nuño, J. D. Ania-Castañón, and S. Wabnitz, “Theory of fiber optic Raman polarizers,” Opt. Lett. 35(23), 3970–3972 (2010). [CrossRef] [PubMed]
  12. L. Ursini, M. Santagiustina, and L. Palmieri, “Raman nonlinear polarization pulling in the pump depleted regime in randomly birefringent fibers,” IEEE Photon. Technol. Lett. 23(4), 254–256 (2011). [CrossRef]
  13. N. J. Muga, M. F. S. Ferreira, and A. N. Pinto, “Broadband polarization pulling using Raman amplification,” Opt. Express 19(19), 18707–18712 (2011). [CrossRef] [PubMed]
  14. J. E. Heebner, R. S. Bennink, R. W. Boyd, and R. A. Fisher, “Conversion of unpolarized light to polarized light with greater than 50% efficiency by photorefractive two-beam coupling,” Opt. Lett. 25(4), 257–259 (2000). [CrossRef] [PubMed]
  15. J. Fatome, S. Pitois, P. Morin, and G. Millot, “Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications,” Opt. Express 18(15), 15311–15317 (2010). [CrossRef] [PubMed]
  16. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008). [CrossRef] [PubMed]
  17. F. Marino, M. Giudici, S. Barland, and S. Balle, “Experimental evidence of stochastic resonance in an excitable optical system,” Phys. Rev. Lett. 88(4), 040601 (2002). [CrossRef]
  18. B. Lindner, J. García-Ojalvo, A. Neimand, and L. Schimansky-Geier, “Effects of noise in excitable systems,” Phys. Rep. 392(6), 321–424 (2004). [CrossRef]
  19. M. I. Dykman, B. Golding, L. I. McCann, V. N. Smelyanskiy, D. G. Luchinsky, R. Mannella, and P. V. E. McClintock, “Activated escape of periodically driven systems,” Chaos 11(3), 587–594 (2001). [CrossRef] [PubMed]
  20. J. D. Ania-Castañón, V. Karalekas, P. Harper, and S. K. Turitsyn, “Simultaneous spatial and spectral transparency in ultralong fiber lasers,” Phys. Rev. Lett. 101(12), 123903 (2008). [CrossRef] [PubMed]
  21. S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castanon, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited