OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24411–24423

Design and fabrication of a metamaterial gradient index diffraction grating at infrared wavelengths

Yu-Ju Tsai, Stéphane Larouche, Talmage Tyler, Guy Lipworth, Nan M. Jokerst, and David R. Smith  »View Author Affiliations

Optics Express, Vol. 19, Issue 24, pp. 24411-24423 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2067 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the design, fabrication and characterization of an artificially structured, gradient index metamaterial with a linear index variation of Δn ∼ 3.0. The linear gradient profile is repeated periodically to form the equivalent of a blazed grating, with the gradient occurring across a spatial distance of 61μm. The grating, which operates at a wavelength of 10.6μm, is composed of non-resonant, progressively modified “I-beam” metamaterial elements and approximates a linear phase shift gradient using 61 distinguishable phase levels. The grating structure consists of four layers of lithographically patterned metallic I-beam elements separated by dielectric layers of SiO2. The index gradient is confirmed by comparing the measured magnitudes of the −1, 0 and +1 diffracted orders to those obtained from full wave simulations incorporating all material properties of the metals and dielectrics of the structures. The large index gradient has the potential to enable compact infrared diffractive and gradient index optics, as well as more exotic transformation optical media.

© 2011 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(110.2760) Imaging systems : Gradient-index lenses
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: September 27, 2011
Revised Manuscript: November 2, 2011
Manuscript Accepted: November 3, 2011
Published: November 14, 2011

Yu-Ju Tsai, Stéphane Larouche, Talmage Tyler, Guy Lipworth, Nan M. Jokerst, and David R. Smith, "Design and fabrication of a metamaterial gradient index diffraction grating at infrared wavelengths," Opt. Express 19, 24411-24423 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Jin, H. Tai, A. Hiltner, E. Baer, and J. S. Shirk, “New class of bioinspired lenses with a gradient refractive index,” J. Appl. Polym. Sci. 103, 1834–1841 (2007). [CrossRef]
  2. G. Beadie, J. S. Shirk, A. Rosenberg, P. A. Lane, E. Fleet, A. R. Kamdar, Y. Jin, M. Ponting, T. Kazmierczak, Y. Yang, A. Hiltner, and E. Baer, “Optical properties of a bio-inspired gradient refractive index polymer lens,” Opt. Express 16, 11540–11547 (2008). [PubMed]
  3. P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnol. 8, 53 (1997). [CrossRef]
  4. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, “Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings,” Opt. Lett. 23, 1081–1083 (1998). [CrossRef]
  5. U. Levy, M. Nezhad, H.-C. Kim, C.-H. Tsai, L. Pang, and Y. Fainman, “Implementation of a graded-index medium by use of subwavelength structures with graded fill factor,” J. Opt. Soc. Am. A 22, 724–733 (2005). [CrossRef]
  6. U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, “Inhomogenous dielectric metamaterials with space-variant polarizability,” Phys. Rev. Lett. 98, 243901 (2007). [CrossRef] [PubMed]
  7. H. Elfström, M. Kuittinen, T. Vallius, B. H. Kleemann, J. Ruoff, and R. Arnold, “Fabrication of blazed gratings by area-coded effective medium structures,” Opt. Commun. 266, 697–703 (2006). [CrossRef]
  8. A. Di Falco, S. C. Kehr, and U. Leonhardt, “Luneburg lens in silicon photonics,” Opt. Express 19, 5156–5162 (2011). [CrossRef] [PubMed]
  9. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004). [CrossRef] [PubMed]
  10. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004). [CrossRef] [PubMed]
  11. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004). [CrossRef] [PubMed]
  12. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005). [CrossRef] [PubMed]
  13. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011). [CrossRef] [PubMed]
  14. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef] [PubMed]
  15. T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, and D. R. Smith, “Free-space microwave focusing by a negative-index gradient lens,” Appl. Phys. Lett. 88, 081101 (2006). [CrossRef]
  16. R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett. 87, 091114 (2005). [CrossRef]
  17. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef] [PubMed]
  18. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef] [PubMed]
  19. J. Neu, B. Krolla, O. Paul, B. Reinhard, R. Beigang, and M. Rahm, “Metamaterial-based gradient index lens with strong focusing in the THz frequency range,” Opt. Express 18, 27748–27757 (2010). [CrossRef]
  20. R. Liu, Q. Cheng, J. Y. Chin, J. J. Mock, T. J. Cui, and D. R. Smith, “Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials,” Opt. Express 17, 21030–21041 (2009). [CrossRef] [PubMed]
  21. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008). [CrossRef]
  22. G. Dolling, M. Wegener, and S. Linden, “Realization of a three-functional-layer negative-index photonic metamaterial,” Opt. Lett. 32, 551–553 (2007). [CrossRef] [PubMed]
  23. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005). [CrossRef]
  24. A. K. Popov and V. M. Shalaev, “Compensating losses in negative-index metamaterials by optical parametric amplification,” Opt. Lett. 31, 2169–2171 (2006). [CrossRef] [PubMed]
  25. R. P. Liu, X. M. Yang, J. G. Gollub, J. J. Mock, T. J. Cui, and D. R. Smith, “Gradient index circuit by waveguided metamaterials,” Appl. Phys. Lett. 94 (2009).
  26. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009). [CrossRef] [PubMed]
  27. N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9, 129–132 (2010). [CrossRef]
  28. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009). [CrossRef] [PubMed]
  29. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3, 461–463 (2009). [CrossRef]
  30. C. Rockstuhl, C. Menzel, T. Paul, T. Pertsch, and F. Lederer, “Light propagation in a fishnet metamaterial,” Phys. Rev. B 78 (2008). [CrossRef]
  31. S. Ishii, A. V. Kildishev, V. M. Shalaev, K.-P. Chen, and V. P. Drachev, “Metal nanoslit lenses with polarization-selective design,” Opt. Lett. 36, 451–453 (2011). [CrossRef] [PubMed]
  32. D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E 71, 036609 (2005). [CrossRef]
  33. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, J. R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983). [CrossRef] [PubMed]
  34. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65 (2002). [CrossRef]
  35. X. D. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70 (2004). [CrossRef]
  36. B. Kress, Applied digital optics : from micro-optics to nanophotonics (Wiley, Chichester, U.K., 2009).
  37. B. E. A. Saleh, Fundamentals of photonics, Wiley series in pure and applied optics (Wiley-Interscience, Hoboken, N.J., 2007).
  38. M. Born, Principles of optics : electromagnetic theory of propagation, interference and diffraction of light (Cambridge University Press, Cambridge ; New York, 1999). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited