OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24434–24447

Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths

Thomas Gerrits, Martin J. Stevens, Burm Baek, Brice Calkins, Adriana Lita, Scott Glancy, Emanuel Knill, Sae Woo Nam, Richard P. Mirin, Robert H. Hadfield, Ryan S. Bennink, Warren P. Grice, Sander Dorenbos, Tony Zijlstra, Teun Klapwijk, and Val Zwiller  »View Author Affiliations


Optics Express, Vol. 19, Issue 24, pp. 24434-24447 (2011)
http://dx.doi.org/10.1364/OE.19.024434


View Full Text Article

Enhanced HTML    Acrobat PDF (1572 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We characterize a periodically poled KTP crystal that produces an entangled, two-mode, squeezed state with orthogonal polarizations, nearly identical, factorizable frequency modes, and few photons in unwanted frequency modes. We focus the pump beam to create a nearly circular joint spectral probability distribution between the two modes. After disentangling the two modes, we observe Hong-Ou-Mandel interference with a raw (background corrected) visibility of 86% (95%) when an 8.6 nm bandwidth spectral filter is applied. We measure second order photon correlations of the entangled and disentangled squeezed states with both superconducting nanowire single-photon detectors and photon-number-resolving transition-edge sensors. Both methods agree and verify that the detected modes contain the desired photon number distributions.

© 2011 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5290) Quantum optics : Photon statistics
(270.5570) Quantum optics : Quantum detectors
(270.6570) Quantum optics : Squeezed states
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: August 3, 2011
Revised Manuscript: October 25, 2011
Manuscript Accepted: October 27, 2011
Published: November 15, 2011

Citation
Thomas Gerrits, Martin J. Stevens, Burm Baek, Brice Calkins, Adriana Lita, Scott Glancy, Emanuel Knill, Sae Woo Nam, Richard P. Mirin, Robert H. Hadfield, Ryan S. Bennink, Warren P. Grice, Sander Dorenbos, Tony Zijlstra, Teun Klapwijk, and Val Zwiller, "Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths," Opt. Express 19, 24434-24447 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-24-24434


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Gerry and P. Knight, Introductory Quantum Optics (Cambridge University Press, 2004).
  2. U. Leonhardt, Measuring The Quantum State Of Light (Cambridge University Press, 1997).
  3. Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa, “Observation of -9 dB quadrature squeezing with improvement of phase stability in homodyne measurement,” Opt. Express15(7), 4321–4327 (2007). [CrossRef] [PubMed]
  4. H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goßler, K. Danzmann, and R. Schnabel, “Observation of Squeezed Light with 10-dB Quantum-Noise Reduction,” Phys. Rev. Lett.100(3), 033602 (2008). [CrossRef] [PubMed]
  5. S. Glancy and H. M. de Vasconcelos, “Methods for producing optical coherent state superpositions,” J. Opt. Soc. Am. B25(5), 712–733 (2008). [CrossRef]
  6. A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating Optical Schrödinger Kittens for Quantum Information Processing,” Science312(5770), 83–86 (2006). [CrossRef] [PubMed]
  7. T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A82(3), 031802 (2010). [CrossRef]
  8. W. P. Grice, A. U’Ren, and I. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A64(6), 063815 (2001). [CrossRef]
  9. R. S. Bennink and R. W. Boyd, “Improved measurement of multimode squeezed light via an eigenmode approach,” Phys. Rev. A66(5), 053815 (2002). [CrossRef]
  10. O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Joint Temporal Density Measurements for Two-Photon State Characterization,” Phys. Rev. Lett.101(15), 153602 (2008). [CrossRef] [PubMed]
  11. A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly Efficient Single-Pass Source of Pulsed Single-Mode Twin Beams of Light,” Phys. Rev. Lett.106(1), 013603 (2011). [CrossRef] [PubMed]
  12. X. Shi, A. Valencia, M. Hendrych, and J. P. Torres, “Generation of indistinguishable and pure heralded single photons with tunable bandwidth,” Opt. Lett.33(8), 875–877 (2008). [CrossRef] [PubMed]
  13. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded Generation of Ultrafast Single Photons in Pure Quantum States,” Phys. Rev. Lett.100(13), 133601 (2008). [CrossRef] [PubMed]
  14. M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted single-photon spectrograph,” Opt. Lett.34(18), 2873–2875 (2009). [CrossRef] [PubMed]
  15. P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright Source of Spectrally Uncorrelated Polarization-Entangled Photons with Nearly Single-Mode Emission,” Phys. Rev. Lett.105(25), 253601 (2010). [CrossRef] [PubMed]
  16. A. I. Lvovsky, W. Wasilewski, and K. Banaszek, “Decomposing a pulsed optical parametric amplifier into independent squeezers,” J. Mod. Opt.54(5), 721–733 (2007). [CrossRef]
  17. F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett.84(10), 1644 (2004). [CrossRef]
  18. M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96(22), 221109 (2010). [CrossRef]
  19. S. N. Dorenbos, E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Superconducting single photon detectors with minimized polarization dependence,” Appl. Phys. Lett.93(16), 161102 (2008). [CrossRef]
  20. M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett.89(3), 031109 (2006). [CrossRef]
  21. R. S. Bennink, “Optimal collinear Gaussian beams for spontaneous parametric down-conversion,” Phys. Rev. A81(5), 053805 (2010). [CrossRef]
  22. A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express19(1), 55–65 (2011). [CrossRef] [PubMed]
  23. B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap (Capman & Hall, 1993).
  24. A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express16(5), 3032–3040 (2008). [CrossRef] [PubMed]
  25. O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A77(3), 032314 (2008). [CrossRef]
  26. T. Zhong, F. N. Wong, T. D. Roberts, and P. Battle, “High performance photon-pair source based on a fiber-coupled periodically poled KTiOPO4 waveguide,” Opt. Express17(14), 12019–12030 (2009). [CrossRef] [PubMed]
  27. R. Loudon, The Quantum Theory of Light (Oxford University Press, 2004).
  28. J. Xiong, G. Zeng, and N. Zhou, “An improved quantum key distribution protocol based on second-order coherence,” Opt. Commun.260(1), 351–354 (2006). [CrossRef]
  29. J. Xiong, N. Zhou, and G. Zeng, “Second-order coherence of light fields with a beam splitter,” J. Phys. B38(23), 4301–4308 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited