OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24483–24498

Dual polarized near-field focusing plate for near-field optical focusing in two dimensions

S. Ali Hosseini, Salvatore Campione, and Filippo Capolino  »View Author Affiliations

Optics Express, Vol. 19, Issue 24, pp. 24483-24498 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2129 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a dual polarized near-field focusing plate (DP-NFFP) with focusing in two dimensions, designed to operate at the near infrared frequency of 193 THz (λ0 = 1550 nm). Subwavelength focusing in two dimensions, for both incident polarizations, is achieved at a distance of a quarter wavelength from the DP-NFFP. The design procedure is described in detail and the proposed design could be easily scaled to other working frequencies, from microwave to optics. We show that the use of ideal lossless (i.e., perfect electric conductor) or real lossy (i.e., silver) metals provide with subwavelength focusing at 193 THz, indicating that metal losses do not significantly affect the DP-NFFP performance, and thus confirming the design feasibility at the near-infrared frequency. Results are validated by using two distinct full-wave simulators.

© 2011 OSA

OCIS Codes
(180.4243) Microscopy : Near-field microscopy
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:

Original Manuscript: September 6, 2011
Revised Manuscript: October 18, 2011
Manuscript Accepted: October 20, 2011
Published: November 15, 2011

Virtual Issues
Vol. 7, Iss. 1 Virtual Journal for Biomedical Optics

S. Ali Hosseini, Salvatore Campione, and Filippo Capolino, "Dual polarized near-field focusing plate for near-field optical focusing in two dimensions," Opt. Express 19, 24483-24498 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, London, 1999).
  2. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004). [CrossRef] [PubMed]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  4. C. C. Smolyaninov, J. Davis, G. A. Elliott, Wurtz, and A. V. Zayats, “Super-resolution optical microscopy based on photonic crystal materials,” Phys. Rev. B 72, 085442 (2005).
  5. V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005). [CrossRef] [PubMed]
  6. J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Techn. 47(11), 2075–2084 (1999). [CrossRef]
  7. M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291(5505), 849–851 (2001). [CrossRef] [PubMed]
  8. M. C. K. Wiltshire, J. V. Hajnal, J. B. Pendry, D. J. Edwards, and C. J. Stevens, “Metamaterial endoscope for magnetic field transfer: near field imaging with magnetic wires,” Opt. Express 11(7), 709–715 (2003). [CrossRef] [PubMed]
  9. S. Steshenko, F. Capolino, P. Alitalo, and S. A. Tretyakov, “Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84, 016607 (2011).
  10. P. A. Belov and M. G. Silveirinha, “Resolution of subwavelength transmission devices formed by a wire medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 056607 (2006). [CrossRef] [PubMed]
  11. G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microwave Theory Techn. 50(12), 2702–2712 (2002). [CrossRef]
  12. O. Sydoruk, M. Shamonin, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, R. Trautner, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Mechanism of subwavelength imaging with bilayered magnetic metamaterials: Theory and experiment,” J. Appl. Phys. 101(7), 073903 (2007). [CrossRef]
  13. Y. Wang, A. M. H. Wong, L. Markley, A. S. Helmy, and G. V. Eleftheriades, “Plasmonic meta-screen for alleviating the trade-offs in the near-field optics,” Opt. Express 17(15), 12351–12361 (2009). [CrossRef] [PubMed]
  14. E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237(5357), 510–512 (1972). [CrossRef] [PubMed]
  15. A. Grbic and G. V. Eleftheriades, “Growing evanescent waves in negative-refractive-index transmission-line media,” Appl. Phys. Lett. 82(12), 1815–1817 (2003). [CrossRef]
  16. A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004). [CrossRef] [PubMed]
  17. L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, “Spatially shifted beam approach to subwavelength focusing,” Phys. Rev. Lett. 101(11), 113901 (2008). [CrossRef] [PubMed]
  18. A. Grbic, L. Jiang, and R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science 320(5875), 511–513 (2008). [CrossRef] [PubMed]
  19. G. V. Eleftheriades and A. M. H. Wong, “Holography-inspired screens for sub-wavelength focusing in the near field,” IEEE Microw. Wirel. Compon. Lett. 18(4), 236–238 (2008). [CrossRef]
  20. L. Markley and G. V. Eleftheriades, “Two-dimensional subwavelength focusing using a slotted meta-screen,” IEEE Microw. Wirel. Compon. Lett. 19(3), 137–139 (2009). [CrossRef]
  21. L. Markley and G. V. Eleftheriades, “A near-field probe for subwavelength-focused imaging,” IEEE Trans. Microwave Theory Techn. 58(3), 551–558 (2010). [CrossRef]
  22. M. F. Imani and A. Grbic, “An analytical investigation of near-field plates,” Metamaterials (Amst.) 4(2-3), 104–111 (2010). [CrossRef]
  23. L. Markley and G. V. Eleftheriades, “Two-dimensional subwavelength-focused imaging using a near-field probe at a lambda/4 working distance,” J. Appl. Phys. 107(9), 093102–093105 (2010). [CrossRef]
  24. P. Alitalo, C. Simovski, A. Viitanen, and S. Tretyakov, “Near-field enhancement and subwavelength imaging in the optical region using a pair of two-dimensional arrays of metal nanospheres,” Phys. Rev. B 74(23), 235425 (2006). [CrossRef]
  25. C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, “Sub-wavelength resolution in linear arrays of plasmonic particles,” J. Appl. Phys. 101(12), 123102 (2007). [CrossRef]
  26. S. Steshenko, F. Capolino, S. A. Tretyakov, and C. R. Simovski, “Super-resolution and near-field enhancement with layers of resonant arrays of nanoparticles,” in Applications of Metamaterials, F. Capolino, ed. (CRC Press, Boca Raton, FL, 2009), p. 4.1.
  27. S. A. Hosseini, S. Campione, and F. Capolino, “A dual polarized near-field focusing plate at microwave frequencies providing sub-wavelength focusing in two dimensions,” in IEEE Antennas Propag. Symp. (Spokane, WA, 2011).
  28. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  29. I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000). [CrossRef]
  30. A. Alù, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Opt. Express 14(4), 1557–1567 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited