OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24516–24521

Individual bioaerosol particle discrimination by multi-photon excited fluorescence

Denis Kiselev, Luigi Bonacina, and Jean-Pierre Wolf  »View Author Affiliations

Optics Express, Vol. 19, Issue 24, pp. 24516-24521 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1641 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Femtosecond laser induced multi-photon excited fluorescence (MPEF) from individual airborne particles is tested for the first time for discriminating bioaerosols. The fluorescence spectra, analysed in 32 channels, exhibit a composite character originating from simultaneous two-photon and three-photon excitation at 790 nm. Simulants of bacteria aggregates (clusters of dyed polystyrene microspheres) and different pollen particles (Ragweed, Pecan, Mulberry) are clearly discriminated by their MPEF spectra. This demonstration experiment opens the way to more sophisticated spectroscopic schemes like pump-probe and coherent control.

© 2011 OSA

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(280.1120) Remote sensing and sensors : Air pollution monitoring

ToC Category:
Remote Sensing

Original Manuscript: September 13, 2011
Revised Manuscript: October 11, 2011
Manuscript Accepted: October 11, 2011
Published: November 15, 2011

Virtual Issues
Vol. 7, Iss. 1 Virtual Journal for Biomedical Optics

Denis Kiselev, Luigi Bonacina, and Jean-Pierre Wolf, "Individual bioaerosol particle discrimination by multi-photon excited fluorescence," Opt. Express 19, 24516-24521 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, “Single-particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol. 37, 628–639 (2003). [CrossRef]
  2. F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3, 240–248 (1999). [CrossRef]
  3. J. D. Eversole, W. K. Cary, C. S. Scotto, R. Pierson, M. Spence, and A. J. Campillo, “Continuous bioaerosol monitoring using UV excitation fluorescence: Outdoor test results,” Field Anal. Chem. Technol. 5, 205–212 (2001). [CrossRef]
  4. G. A. Luoma, P. P. Cherrier, and L. A. Retfalvi, “Real-time warning of biological-agent attacks with the Canadian integrated biochemical agent detection system ii (cibads ii),” Field Anal. Chem. Technol. 3, 260–273 (1999). [CrossRef]
  5. Y. L. Pan, K. B. Aptowicz, R. K. Chang, M. Hart, and J. D. Eversole, “Characterizing and monitoring respiratory aerosols by light scattering,” Opt. Lett. 28, 589–591 (2003). [CrossRef] [PubMed]
  6. P. Kaye, E. Hirst, and Z. WangThomas, “Neural-network-based spatial light-scattering instrument for hazardous airborne fiber detection,” Appl. Opt. 36, 6149–6156 (1997). [CrossRef] [PubMed]
  7. S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221–239 (1999). [CrossRef]
  8. Y. L. Pan, P. Cobler, S. Rhodes, A. Potter, T. Chou, S. Holler, R. K. Chang, R. G. Pinnick, and J. P. Wolf, “High-speed, high-sensitivity aerosol fluorescence spectrum detection using a 32-anode photomultiplier tube detector,” Rev. Sci. Instrum. 72, 1831–1836 (2001). [CrossRef]
  9. Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ. 45, 1555–1563 (2011). [CrossRef]
  10. Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results,” Opt Express 18, 12436–12457 (2010). [CrossRef] [PubMed]
  11. V. Sivaprakasam, A. L. Huston, C. Scotto, and J. D. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt Express 12, 4457–4466 (2004). [CrossRef] [PubMed]
  12. J. R. Gord, T. R. Meyer, and S. Roy, “Applications of ultrafast lasers for optical measurements in combusting flows,” Annu Rev Anal Chem 1, 663–687 (2008). [CrossRef]
  13. J. P. Wolf, F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, and H. Rabitz, “Femtosecond laser pulses distinguish bacteria from background urban aerosols,” Appl Phys Lett 87, 063901 (2005). [CrossRef]
  14. V. Boutou, F. Courvoisier, L. Guyon, M. Roth, H. Rabitz, and J. P. Wolf, “Discriminating bacteria from other atmospheric particles using femtosecond molecular dynamics,” J. Photoch. Photobio. A 180, 300–306 (2006). [CrossRef]
  15. H. U. Stauffer, W. D. Kulatilaka, J. R. Gord, and S. Roy, “Laser-induced fluorescence detection of hydroxyl (OH) radical by femtosecond excitation,” Opt. Lett. 36, 1776–1778 (2011). [CrossRef] [PubMed]
  16. G. Gerber, T. Brixner, N. H. Damrauer, and P. Niklaus, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001). [CrossRef] [PubMed]
  17. M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J. P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys Rev Lett 102, 253001 (2009). [CrossRef] [PubMed]
  18. T. Nicolai, D. Carr, S. K. Weiland, H. Duhme, O. von Ehrenstein, C. Wagner, and E. von Mutius, “Urban traffic and pollutant exposure related to respiratory outcomes and atopy in a large sample of children,” Eur Respir J 21, 956–963 (2003). [CrossRef] [PubMed]
  19. L. Cardenas, S. T. McKenna, J. G. Kunkel, and P. K. Hepler, “NAD(P)H oscillates in pollen tubes and is correlated with tip growth,” Plant Physiol. 142, 1460–1468 (2006). [CrossRef] [PubMed]
  20. N. Dharajiya, I. Boldogh, V. Cardenas, and S. Sur, “Role of pollen NAD(P)H oxidase in allergic inflammation,” Curr. Opin. Allergy Cl 8, 57–62 (2008). [CrossRef]
  21. W. W. Webb, W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, and B. T. Hyman, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” P. Natl. Acad. Sci. USA 100, 7075–7080 (2003). [CrossRef]
  22. S. C. Hill, B. V, J. Yu, S. Ramstein, J. P. Wolf, Y. L. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000). [CrossRef] [PubMed]
  23. C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J. P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002). [CrossRef] [PubMed]
  24. J. Yu, M. Baudelet, L. Guyon, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006). [CrossRef]
  25. J. Yu, M. Baudelet, M. Bossu, J. Jovelet, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006). [CrossRef]
  26. Y. Silberberg, N. Dudovich, and D. Oron, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002). [CrossRef] [PubMed]
  27. A. Dogariu, A. Goltsov, D. Pestov, A. V. Sokolov, and M. O. Scully, “Real-time detection of bacterial spores using coherent anti-stokes Raman spectroscopy,” J. Appl. Phys. 103 (2008). [CrossRef]
  28. S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95 (2009).
  29. S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energ. Combust. 36, 280–306 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited