OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24546–24556

Widefield heterodyne interferometry using a custom CMOS modulated light camera

Rikesh Patel, Samuel Achamfuo-Yeboah, Roger Light, and Matt Clark  »View Author Affiliations


Optics Express, Vol. 19, Issue 24, pp. 24546-24556 (2011)
http://dx.doi.org/10.1364/OE.19.024546


View Full Text Article

Enhanced HTML    Acrobat PDF (833 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper a method of taking widefield heterodyne interferograms using a prototype modulated light camera is described. This custom CMOS modulated light camera (MLC) uses analogue quadrature demodulation at each pixel to output the phase and amplitude of the modulated light as DC voltages. The heterodyne interference fringe patterns are generated using an acousto-optical frequency shifter (AOFS) in an arm of a Mach-Zehnder interferometer. Widefield images of fringe patterns acquired using the prototype MLC are presented. The phase can be measured to an accuracy of ±6.6°. The added value of this method to acquire widefield images are discussed along with the advantages.

© 2011 OSA

OCIS Codes
(100.3175) Image processing : Interferometric imaging
(110.3175) Imaging systems : Interferometric imaging

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: October 4, 2011
Revised Manuscript: November 3, 2011
Manuscript Accepted: November 4, 2011
Published: November 15, 2011

Virtual Issues
Vol. 7, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Rikesh Patel, Samuel Achamfuo-Yeboah, Roger Light, and Matt Clark, "Widefield heterodyne interferometry using a custom CMOS modulated light camera," Opt. Express 19, 24546-24556 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-24-24546


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. A. Riza and M. A. Arain, “Angstrom-range optical path-length measurement with a high-speed scanning heterodyne optical interferometer,” Appl. Opt.42, 2341–2345 (2003). [CrossRef] [PubMed]
  2. V. Ganapathi, C. Plagemann, D. Koller, and S. Thrun, “Real time motion capture using a single time-of-flight camera,” Proc. IEEE Comput. Sci. Conf. on Comput. Vision Pattern Recognit., 755–762 (2010).
  3. D. Droeschel, D. Holzand, and S. Behnke, “Multi-frequency phase unwrapping for time-of-flight cameras,” IEEE/RSJ 2010 Int. Conf. Intell. Rob. Syst.66, 1463–1469 (2010). [CrossRef]
  4. X. Luan, R. Schwarte, Z. Zhang, Z. Xu, H.G. Heinol, B. Buxbaum, T. Ringbeck, and H. He, “3D intelligent sensing based on the PMD technology,” Proc. SPIE4540, 482–487 (2001). [CrossRef]
  5. R. Onodera and Y. Ishii, “Two-wavelength laser-diode heterodyne interferometry with one phasemeter,” Opt. Lett.20, 2502–2502 (1995). [CrossRef] [PubMed]
  6. S. Yokoyama, J. Ohnishi, S. Iwasaki, K. Seta, H. Matsumoto, and N. Suzuki, “Real-time and high-resolution absolute-distance measurement using a two-wavelength superheterodyne interferometer,” Meas. Sci. Technol.10, 1233 (1999). [CrossRef]
  7. S. Vergamota, L. Cupido, M. Manso, F. Eusebio, A. Silva, P. Varela, J. Cabral, F. Serra, and C. Varandas, “Microwave interferometer with a differential quadrature phase detection,” Rev. Sci. Instrum.66, 2547–2547 (1995). [CrossRef]
  8. H.-K. Teng and K.-C. Lang, “Heterodyne interferometer for displacement measurement with amplitude quadrature and noise suppression,” Opt. Commun.280, 16–22 (2007). [CrossRef]
  9. S. Chamberlain and J. Lee, “Novel wide dynamic range silicon photodetector and linear imaging array,” IEEE J. Solid State Circuits20, 41–48 (1984). [CrossRef]
  10. F. G. Cervantes, G. Heinzel, A. F. G. Marin, V. Wand, F. Steier, O. Jennrich, and K. Danzmann, “Real-time phase-front detector for heterodyne interferometers,” Appl. Opt.46, 4541–4548 (2007). [CrossRef] [PubMed]
  11. A. Kimachi, “Real-time heterodyne imaging interferometry: Focal-plane amplitude and phase demodulation using a three-phase correlation image sensor,” Appl. Opt.46, 87–94 (2007). [CrossRef]
  12. A. Kimachi, “Real-time heterodyne speckle pattern interferometry using the correlation image sensor,” Appl. Opt.49, 6808–6815 (2010). [CrossRef] [PubMed]
  13. P. Dmochowski, B. Hayes-Gill, M. Clark, J. Crowe, M. Somekh, and S. Morgan, “Camera pixel for coherent detection of modulated light,” Electron. Lett.40, 1403–1404 (2004). [CrossRef]
  14. D. Summers, M. Clark, I. Stockford, S. Achamfuo-Yeboah, and J. Pereira Do Carmo, “Modulated light camera for space applications and assessment via a test bench system,” Acta Astronaut.66, 1399–1403 (2010). [CrossRef]
  15. M. Pitter, R. Light, M. Somekh, M. Clark, and B. Hayes-Gill, “Dual-phase synchronous light detection with 64 x 64 CMOS modulated light camera,” Electron. Lett.40, 1404–1406 (2004). [CrossRef]
  16. N. Johnston, C. Stewart, R. Light, B. Hayes-Gill, M. Somekh, S. Morgan, J. Sambles, and M. Pitter, “Quad-phase synchronous light detection with 64 × 64 CMOS modulated light camera,” Electron. Lett.45, 1090–1092 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited