OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24699–24711

Propagation of a radial phased-locked Lorentz beam array in turbulent atmosphere

Guoquan Zhou  »View Author Affiliations


Optics Express, Vol. 19, Issue 24, pp. 24699-24711 (2011)
http://dx.doi.org/10.1364/OE.19.024699


View Full Text Article

Enhanced HTML    Acrobat PDF (1340 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A radial phased-locked (PL) Lorentz beam array provides an appropriate theoretical model to describe a coherent diode laser array, which is an efficient radiation source for high-power beaming use. The propagation of a radial PL Lorentz beam array in turbulent atmosphere is investigated. Based on the extended Huygens-Fresnel integral and some mathematical techniques, analytical formulae for the average intensity and the effective beam size of a radial PL Lorentz beam array are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of a radial PL Lorentz beam array in turbulent atmosphere are numerically calculated. The influences of the beam parameters and the structure constant of the atmospheric turbulence on the propagation of a radial PL Lorentz beam array in turbulent atmosphere are discussed in detail.

© 2011 OSA

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(140.2010) Lasers and laser optics : Diode laser arrays
(140.3290) Lasers and laser optics : Laser arrays

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: August 16, 2011
Revised Manuscript: October 17, 2011
Manuscript Accepted: November 10, 2011
Published: November 17, 2011

Citation
Guoquan Zhou, "Propagation of a radial phased-locked Lorentz beam array in turbulent atmosphere," Opt. Express 19, 24699-24711 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-24-24699


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Naqwi and F. Durst, “Focusing of diode laser beams: a simple mathematical model,” Appl. Opt.29(12), 1780–1785 (1990). [CrossRef] [PubMed]
  2. J. Yang, T. Chen, G. Ding, and X. Yuan, “Focusing of diode laser beams: a partially coherent Lorentz model,” Proc. SPIE6824, 68240A, 68240A-8 (2007). [CrossRef]
  3. W. P. Dumke, “The angular beam divergence in double-heterojunction lasers with very thin active regions,” J. Quantum Electron.11(7), 400–402 (1975). [CrossRef]
  4. O. E. Gawhary and S. Severini, “Lorentz beams and symmetry properties in paraxial optics,” J. Opt. A, Pure Appl. Opt.8(5), 409–414 (2006). [CrossRef]
  5. G. Zhou, J. Zheng, and Y. Xu, “Investigation in the far field characteristics of Lorentz beam from the vectorial structure,” J. Mod. Opt.55(6), 993–1002 (2008). [CrossRef]
  6. G. Zhou, “Propagation of vectorial Lorentz beam beyond the paraxial approximation,” J. Mod. Opt.55(21), 3573–3579 (2008). [CrossRef]
  7. G. Zhou, “The beam propagation factors and the kurtosis parameters of a Lorentz beam,” Opt. Laser Technol.41(8), 953–955 (2009). [CrossRef]
  8. G. Zhou, “Generalized M2 factors of truncated partially coherent Lorentz and Lorentz-Gauss beams,” J. Opt.12(1), 015701 (2010). [CrossRef]
  9. C. Zhao and Y. Cai, “Paraxial propagation of Lorentz and Lorentz-Gauss beams in uniaxial crystals orthogonal to the optical axis,” J. Mod. Opt.57(5), 375–384 (2010). [CrossRef]
  10. J. Li, Y. Chen, S. Xu, Y. Wang, M. Zhou, Q. Zhao, Y. Xin, and F. Chen, “Propagation properties of Lorentz beam in uniaxial crystals orthogonal to the optical axis,” Opt. Laser Technol.43(3), 506–514 (2011). [CrossRef]
  11. O. El Gawhary and S. Severini, “Lorentz beams as a basis for a new class of rectangular symmetric optical fields,” Opt. Commun.269(2), 274–284 (2007). [CrossRef]
  12. A. Torre, W. A. B. Evans, O. E. Gawhary, and S. Severini, “Relativistic Hermite polynomials and Lorentz beams,” J. Opt. A, Pure Appl. Opt.10(11), 115007 (2008). [CrossRef]
  13. H. T. Eyyuboğlu and Y. Baykal, “Hermite-sine-Gaussian and Hermite-sinh-Gaussian laser beams in turbulent atmosphere,” J. Opt. Soc. Am. A22(12), 2709–2718 (2005). [CrossRef] [PubMed]
  14. H. T. Eyyuboğlu and Y. Baykal, “Average intensity and spreading of cosh-Gaussian laser beams in the turbulent atmosphere,” Appl. Opt.44(6), 976–983 (2005). [CrossRef] [PubMed]
  15. Y. Cai and S. He, “Average intensity and spreading of an elliptical Gaussian beam propagating in a turbulent atmosphere,” Opt. Lett.31(5), 568–570 (2006). [CrossRef] [PubMed]
  16. Y. Yuan, Y. Cai, J. Qu, H. T. Eyyuboğlu, and Y. Baykal, “Average intensity and spreading of an elegant Hermite-Gaussian beam in turbulent atmosphere,” Opt. Express17(13), 11130–11139 (2009). [CrossRef] [PubMed]
  17. F. Wang, Y. Cai, H. T. Eyyuboğlu, and Y. K. Baykal, “Average intensity and spreading of partially coherent standard and elegant Laguerre-Gaussian beams in turbulent atmosphere,” Prog. Electromagn. Res.103, 33–56 (2010). [CrossRef]
  18. P. Zhou, X. Wang, Y. Ma, H. Ma, X. Xu, and Z. Liu, “Average intensity and spreading of Lorentz beam propagating in a turbulent atmosphere,” J. Opt.12, 01540–01549 (2010).
  19. C. Zhao and Y. Cai, “Propagation of partially coherent Lorentz and Lorentz-Gauss beams through a paraxial ABCD optical system in a turbulent atmosphere,” J. Mod. Opt.58(9), 810–818 (2011). [CrossRef]
  20. J. P. Hobimer, D. R. Myers, T. M. Brennan, and B. E. Hammons, “Integrated injection-locked high-power cw diode laser arrays,” Appl. Phys. Lett.55(6), 531–533 (1989). [CrossRef]
  21. X. Du and D. Zhao, “Propagation characteristics of stochastic electromagnetic array beams,” Appl. Phys. B93(4), 901–905 (2008). [CrossRef]
  22. S. P. Ng and P. B. Phua, “Coherent polarization locking of a diode emitter array,” Opt. Lett.34(13), 2042–2044 (2009). [CrossRef] [PubMed]
  23. L. Wang, L. Wang, and S. Zhu, “Formation of optical vortices using coherent laser beam array,” Opt. Commun.282(6), 1088–1094 (2009). [CrossRef]
  24. X. Du and D. Zhao, “Statistical properties of correlated radial stochastic electromagnetic array beams on propagation,” Opt. Commun.282(10), 1993–1997 (2009). [CrossRef]
  25. J. Li, Y. Chen, S. Xu, Y. Wang, M. Zhou, Q. Zhao, Y. Xin, and F. Chen, “Far-field radiation of coherent and incoherent combined Lorentz-Gaussian laser array,” Proc. SPIE7749, 77491Z, 77491Z-6 (2010). [CrossRef]
  26. P. Zhou, X. Wang, Y. Ma, and Z. Liu, “Propagation properties of a Lorentz beam array,” Appl. Opt.49(13), 2497–2503 (2010). [CrossRef]
  27. P. Zhou, X. Wang, Y. Ma, H. Ma, and Z. Liu, “Irradiance tailoring by fractional Fourier transform of a radial Gaussian beam array,” Proc. SPIE7822, 78220J, 78220J-6 (2010). [CrossRef]
  28. H. Tang, B. Ou, B. Luo, H. Guo, and A. Dang, “Average spreading of a radial Gaussian beam array in non-Kolmogorov turbulence,” J. Opt. Soc. Am. A28(6), 1016–1021 (2011). [CrossRef] [PubMed]
  29. Y. Zhu, D. Zhao, and X. Du, “Propagation of stochastic Gaussian-Schell model array beams in turbulent atmosphere,” Opt. Express16(22), 18437–18442 (2008). [CrossRef] [PubMed]
  30. L. Wang and W. Zheng, “The effect of atmospheric turbulence on the propagation properties of optical vortices formed by using coherent laser beam array,” J. Opt. A, Pure Appl. Opt.11(6), 065703 (2009). [CrossRef]
  31. X. Li and X. Ji, “Angular spread and directionality of the Hermite-Gaussian array beam propagating through atmospheric turbulence,” Appl. Opt.48(22), 4338–4347 (2009). [CrossRef] [PubMed]
  32. X. Ji, H. T. Eyyuboğlu, and Y. Baykal, “Influence of turbulence on the effective radius of curvature of radial Gaussian array beams,” Opt. Express18(7), 6922–6928 (2010). [CrossRef] [PubMed]
  33. P. P. Schmidt, “A method for the convolution of lineshapes which involve the Lorentz distribution,” J. Phys. B9(13), 2331–2339 (1976). [CrossRef]
  34. S. C. H. Wang and M. A. Plonus, “Optical beam propagation for a partially coherent source in the turbulent atmosphere,” J. Opt. Soc. Am.69(9), 1297–1304 (1979). [CrossRef]
  35. H. T. Eyyuboğlu, “Hermite-cosine-Gaussian laser beam and its propagation characteristics in turbulent atmosphere,” J. Opt. Soc. Am. A22(8), 1527–1535 (2005). [CrossRef] [PubMed]
  36. K. Zhu, G. Zhou, X. Li, X. Zheng, and H. Tang, “Propagation of Bessel-Gaussian beams with optical vortices in turbulent atmosphere,” Opt. Express16(26), 21315–21320 (2008). [CrossRef] [PubMed]
  37. I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products (Academic Press, 1980).
  38. W. H. Carter, “Spot size and divergence for Hermite Gaussian beams of any order,” Appl. Opt.19(7), 1027–1029 (1980). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited