OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24775–24781

Terahertz pinch harmonics enabled by single nano rods

Hyeong-Ryeol Park, Young-Mi Bahk, Jong Ho Choe, Sanghoon Han, Seong Soo Choi, Kwang Jun Ahn, Namkyoo Park, Q-Han Park, and Dai-Sik Kim  »View Author Affiliations

Optics Express, Vol. 19, Issue 24, pp. 24775-24781 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1233 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A pinch harmonic (or guitar harmonic) is a musical note produced by lightly pressing the thumb of the picking hand upon the string immediately after it is picked [J. Chem. Educ. 84, 1287 (2007)]. This technique turns off the fundamental and all overtones except those with a node at that location. Here we present a terahertz analogue of pinch harmonics, whereby a metallic nano rod placed at a harmonic node on a terahertz nanoresonator suppresses the fundamental mode, making the higher harmonics dominant. Strikingly, a skin depth-wide nano rod placed at the mid-point turns off all resonances. Our work demonstrates that terahertz electromagnetic waves can be tailored by nanoparticles strategically positioned, paving important path towards terahertz switching and detection applications.

© 2011 OSA

OCIS Codes
(300.6380) Spectroscopy : Spectroscopy, modulation
(300.6495) Spectroscopy : Spectroscopy, teraherz
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: September 28, 2011
Revised Manuscript: November 7, 2011
Manuscript Accepted: November 7, 2011
Published: November 17, 2011

Virtual Issues
Vol. 7, Iss. 1 Virtual Journal for Biomedical Optics

Hyeong-Ryeol Park, Young-Mi Bahk, Jong Ho Choe, Sanghoon Han, Seong Soo Choi, Kwang Jun Ahn, Namkyoo Park, Q-Han Park, and Dai-Sik Kim, "Terahertz pinch harmonics enabled by single nano rods," Opt. Express 19, 24775-24781 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005). [CrossRef] [PubMed]
  2. V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104(22), 223901 (2010). [CrossRef] [PubMed]
  3. P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009). [CrossRef] [PubMed]
  4. J. H. Kang, D. S. Kim, and Q. H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102(9), 093906 (2009). [CrossRef] [PubMed]
  5. W. H. Zhang, L. N. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010). [CrossRef] [PubMed]
  6. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008). [CrossRef]
  7. M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009). [CrossRef] [PubMed]
  8. A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008). [CrossRef]
  9. M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009). [CrossRef]
  10. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005). [CrossRef] [PubMed]
  11. J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets,” Phys. Rev. Lett. 99(13), 137401 (2007). [CrossRef] [PubMed]
  12. M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, K. J. Ahn, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Near field imaging of terahertz focusing onto rectangular apertures,” Opt. Express 16(25), 20484–20489 (2008). [CrossRef] [PubMed]
  13. H. R. Park, Y. M. Park, H. S. Kim, J. S. Kyoung, M. A. Seo, D. J. Park, Y. H. Ahn, K. J. Ahn, and D. S. Kim, “Terahertz nanoresonators: Giant field enhancement and ultrabroadband performance,” Appl. Phys. Lett. 96(12), 121106 (2010). [CrossRef]
  14. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010). [CrossRef] [PubMed]
  15. M. Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14(20), 1128–1130 (1989). [CrossRef] [PubMed]
  16. Q. Wu, M. Litz, and X. C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68(21), 2924–2926 (1996). [CrossRef]
  17. M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009). [CrossRef]
  18. F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005). [CrossRef] [PubMed]
  19. H. R. Park, S. M. Koo, O. K. Suwal, Y. M. Park, J. S. Kyoung, M. A. Seo, S. S. Choi, N. K. Park, D. S. Kim, and K. J. Ahn, “Resonance behavior of single ultrathin slot antennas on finite dielectric substrates in terahertz regime,” Appl. Phys. Lett. 96(21), 211109 (2010). [CrossRef]
  20. M. Shalaby, H. Merbold, M. Peccianti, L. Razzari, G. Sharma, T. Ozaki, R. Morandotti, T. Feurer, A. Weber, L. Heyderman, B. Patterson, and H. Sigg, “Concurrent field enhancement and high transmission of THz radiation in nanoslit arrays,” Appl. Phys. Lett. 99(4), 041110 (2011). [CrossRef]
  21. A. Novitsky, M. Zalkovskij, R. Malureanu, and A. Lavrinenko, “Microscopic model of the THz field enhancement in a metal nanoslit,” Opt. Commun. 284(23), 5495–5500 (2011). [CrossRef]
  22. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–20 (1983). [CrossRef] [PubMed]
  23. A. K. Azad and W. L. Zhang, “Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness,” Opt. Lett. 30(21), 2945–2947 (2005). [CrossRef] [PubMed]
  24. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009). [CrossRef] [PubMed]
  25. B. Feng, Z. X. Li, and X. Zhang, “Effect of grain-boundary scattering on the thermal conductivity of nanocrystalline metallic films,” J. Phys. D Appl. Phys. 42(5), 055311 (2009). [CrossRef]
  26. S. Zhang, W. J. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. O. Osgood, “Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies,” J. Opt. Soc. Am. B 23(3), 434–438 (2006). [CrossRef]
  27. H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008). [CrossRef] [PubMed]
  28. S. Koo, M. S. Kumar, J. Shin, D. Kim, and N. Park, “Extraordinary magnetic field enhancement with metallic nanowire: role of surface impedance in Babinet’s principle for sub-skin-depth regime,” Phys. Rev. Lett. 103(26), 263901 (2009). [CrossRef] [PubMed]
  29. R. Singh, E. Smirnova, A. J. Taylor, J. F. O’Hara, and W. L. Zhang, “Optically thin terahertz metamaterials,” Opt. Express 16(9), 6537–6543 (2008). [CrossRef] [PubMed]
  30. R. Marques, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design - Theory and experiments,” IEEE T. Antenn. Propag. 51(10), 2572–2581 (2003). [CrossRef]
  31. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006). [CrossRef] [PubMed]
  32. H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009). [CrossRef]
  33. M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited