OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24783–24794

Nonlinear structured illumination microscopy by surface plasmon enhanced stimulated emission depletion

Han Zhang, Ming Zhao, and Leilei Peng  »View Author Affiliations

Optics Express, Vol. 19, Issue 24, pp. 24783-24794 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2047 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nonlinear structured illumination microscopy (SIM) in theory has unlimited resolution over a full field of view. However under a realistic signal-to-noise ratio and a limited photon budget, the performance of nonlinear SIM strongly depends on the behavior of the nonlinear effect. Saturated SIM (SSIM) is not ideal in biological applications due to its strong photobleaching. Stimulated emission depletion (STED) SIM will have high sensitivity, higher resolution and less photo toxicity than SSIM. However, the laser power necessary to support a strong full-field STED effect is not attainable with current laser technology. We experimentally proved that surface plasmon resonance enhances (SPR) near surface STED effect by a factor of 8, and therefore STED-SIM is feasible in the total internal reflection microscopy mode with SPR enhancement. Simulation analysis predicts that SPR enhanced 2D STED is strong enough for nonlinear SIM to achieve high-speed imaging at 30-nm resolution and single molecule sensitivity. The STED-SIM superresolution microscopy method would provide a solution for observing single molecule processes in vitro or on the basal membrane of live cells.

© 2011 OSA

OCIS Codes
(100.6640) Image processing : Superresolution
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: August 30, 2011
Revised Manuscript: October 24, 2011
Manuscript Accepted: November 7, 2011
Published: November 18, 2011

Virtual Issues
Vol. 7, Iss. 1 Virtual Journal for Biomedical Optics

Han Zhang, Ming Zhao, and Leilei Peng, "Nonlinear structured illumination microscopy by surface plasmon enhanced stimulated emission depletion," Opt. Express 19, 24783-24794 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. W. Hell, “Microscopy and its focal switch,” Nat. Methods 6(1), 24–32 (2009). [PubMed]
  2. S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007). [CrossRef] [PubMed]
  3. B. Huang, H. Babcock, and X. Zhuang, “Breaking the diffraction barrier: super-resolution imaging of cells,” Cell 143(7), 1047–1058 (2010). [CrossRef] [PubMed]
  4. B. Huang, M. Bates, and X. Zhuang, “Super-resolution fluorescence microscopy,” Annu. Rev. Biochem. 78(1), 993–1016 (2009). [CrossRef] [PubMed]
  5. R. Heintzmann and M. G. L. Gustafsson, “Subdiffraction resolution in continuous samples,” Nat. Photonics 3(7), 362–364 (2009). [CrossRef]
  6. B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008). [CrossRef] [PubMed]
  7. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006). [CrossRef] [PubMed]
  8. B. Hein, K. I. Willig, and S. W. Hell, “Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell,” Proc. Natl. Acad. Sci. U.S.A. 105(38), 14271–14276 (2008). [CrossRef] [PubMed]
  9. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006). [CrossRef] [PubMed]
  10. J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008). [CrossRef] [PubMed]
  11. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994). [CrossRef] [PubMed]
  12. T. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” in PNAS, (2000), p. 8206.
  13. M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005). [CrossRef] [PubMed]
  14. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000). [CrossRef] [PubMed]
  15. U. V. Naegerl, K. I. Willig, B. Hein, S. W. Hell, and T. Bonhoeffer, “Live-cell imaging of dendritic spines by STED microscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(48), 18982–18987 (2008). [CrossRef] [PubMed]
  16. V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008). [CrossRef] [PubMed]
  17. M. Wagner, P. Weber, T. Bruns, W. S. Strauss, R. Wittig, and H. Schneckenburger, “Light dose is a limiting factor to maintain cell viability in fluorescence microscopy and single molecule detection,” Int. J. Mol. Sci. 11(3), 956–966 (2010). [CrossRef] [PubMed]
  18. M. G. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005). [CrossRef] [PubMed]
  19. P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009). [CrossRef] [PubMed]
  20. P. T. C. So, H.-S. Kwon, and C. Y. Dong, “Resolution enhancement in standing-wave total internal reflection microscopy: a point-spread-function engineering approach,” J. Opt. Soc. Am. A 18(11), 2833–2845 (2001). [CrossRef] [PubMed]
  21. L. Hirvonen, O. Mandula, K. Wicker, and R. Heintzmann, “Structured illumination microscopy using photoswitchable fluorescent proteins,” in Proceedings of SPIE, (SPIE, 2008), p. 68610L.
  22. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009). [CrossRef]
  23. R. Kasper, B. Harke, C. Forthmann, P. Tinnefeld, S. W. Hell, and M. Sauer, “Single-molecule STED microscopy with photostable organic fluorophores,” Small 6(13), 1379–1384 (2010). [CrossRef] [PubMed]
  24. K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006). [CrossRef] [PubMed]
  25. B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16(6), 4154–4162 (2008). [CrossRef] [PubMed]
  26. J. Homola, “Electromagnetic Theory of Surface Plasmons,” Springer Ser Chem Sens Biosens 4, 3–44 (2006). [CrossRef]
  27. K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997). [CrossRef]
  28. S. Ekgasit, F. Yu, and W. Knoll, “Fluorescence intensity in surface-plasmon field-enhanced fluorescence spectroscopy,” Sens. Actuators B Chem. 104(2), 294–301 (2005). [CrossRef]
  29. R.-Y. He, G.-L. Chang, H.-L. Wu, C.-H. Lin, K.-C. Chiu, Y.-D. Su, and S. J. Chen, “Enhanced live cell membrane imaging using surface plasmon-enhanced total internal reflection fluorescence microscopy,” Opt. Express 14(20), 9307–9316 (2006). [CrossRef] [PubMed]
  30. R.-Y. He, Y.-D. Su, K.-C. Cho, C.-Y. Lin, N.-S. Chang, C.-H. Chang, and S. J. Chen, “Surface plasmon-enhanced two-photon fluorescence microscopy for live cell membrane imaging,” Opt. Express 17(8), 5987–5997 (2009). [CrossRef] [PubMed]
  31. E. Chung, Y.-H. Kim, W. T. Tang, C. J. R. Sheppard, and P. T. C. So, “Wide-field extended-resolution fluorescence microscopy with standing surface-plasmon-resonance waves,” Opt. Lett. 34(15), 2366–2368 (2009). [CrossRef] [PubMed]
  32. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010). [CrossRef]
  33. K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007). [CrossRef] [PubMed]
  34. T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf., A 171(1-3), 115–130 (2000). [CrossRef]
  35. R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy--a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19(8), 1599–1609 (2002). [CrossRef] [PubMed]
  36. R. Heintzmann, “Saturated patterned excitation microscopy with two-dimensional excitation patterns,” Micron 34(6-7), 283–291 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited