OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24804–24809

Dynamically tuning emission band of CdSe/ZnS quantum dots assembled on Ag nanorod array: plasmon-enhanced Stark shift

Xiao-Niu Peng, Zhang-Kai Zhou, Wei Zhang, and Zhong-Hua Hao  »View Author Affiliations

Optics Express, Vol. 19, Issue 24, pp. 24804-24809 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1523 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate tuning emission band of CdSe/ZnS semiconductor quantum dots (SQDs) closely-packed in the proximity of Ag nanorod array by dynamically adjusting exciton-plasmon interaction. Large red-shift is observed in two-photon luminescence (TPL) spectra of the SQDs when the longitudinal surface plasmon resonance (LSPR) of Ag nanorod array is adjusted to close to excitation laser wavelength, and the spectral red-shift of TPL reaches as large as 101 meV by increasing excitation power, which is slightly larger than full width at half-maximum of emission spectrum of the SQDs. The observed LSPR-dependent spectral shifting behaviors are explained by a theoretical model of plasmon-enhanced quantum-confined Stark effect. These observations could find the applications in dynamical information processing in active plasmonic and photonic nanodevices.

© 2011 OSA

OCIS Codes
(020.6580) Atomic and molecular physics : Stark effect
(160.6000) Materials : Semiconductor materials
(240.6680) Optics at surfaces : Surface plasmons
(160.4236) Materials : Nanomaterials

ToC Category:
Atomic and Molecular Physics

Original Manuscript: September 14, 2011
Revised Manuscript: November 9, 2011
Manuscript Accepted: November 10, 2011
Published: November 18, 2011

Xiao-Niu Peng, Zhang-Kai Zhou, Wei Zhang, and Zhong-Hua Hao, "Dynamically tuning emission band of CdSe/ZnS quantum dots assembled on Ag nanorod array: plasmon-enhanced Stark shift," Opt. Express 19, 24804-24809 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007). [CrossRef]
  2. L. Bányai and S. W. Koch, Semiconductor Quantum Dots (World Scientific Publishing Co. Pte. Ltd., 1993).
  3. Q. Q. Wang, A. Muller, M. T. Cheng, H. J. Zhou, P. Bianucci, and C. K. Shih, “Coherent control of a V-type three-level system in a single quantum dot,” Phys. Rev. Lett. 95(18), 187404 (2005). [CrossRef] [PubMed]
  4. A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011). [CrossRef] [PubMed]
  5. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999). [CrossRef]
  6. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006). [CrossRef] [PubMed]
  7. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009). [CrossRef]
  8. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007). [CrossRef] [PubMed]
  9. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005). [CrossRef] [PubMed]
  10. Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics 4(1), 50–54 (2010). [CrossRef]
  11. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011). [CrossRef] [PubMed]
  12. M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008). [CrossRef] [PubMed]
  13. T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3(7), 1988–1994 (2009). [CrossRef] [PubMed]
  14. N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008). [CrossRef] [PubMed]
  15. A. Manjavacas, F. J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11(6), 2318–2323 (2011). [CrossRef] [PubMed]
  16. R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8(7), 2106–2111 (2008). [CrossRef] [PubMed]
  17. N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B 79(24), 241404 (2009). [CrossRef]
  18. S. A. Empedocles and M. G. Bawendi, “Quantum-confined stark effect in single CdSe nanocrystallite quantum dots,” Science 278(5346), 2114–2117 (1997). [CrossRef] [PubMed]
  19. M. E. Flatté, A. A. Kornyshev, and M. Urbakh, “Giant Stark effect in quantum dots at liquid/liquid interfaces: a new option for tunable optical filters,” Proc. Natl. Acad. Sci. U.S.A. 105(47), 18212–18214 (2008). [CrossRef] [PubMed]
  20. M. Joffre, D. Hulin, A. Migus, and M. Combescot, “Laser-induced exciton splitting,” Phys. Rev. Lett. 62(1), 74–77 (1989). [CrossRef] [PubMed]
  21. A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect,” Phys. Rev. Lett. 103(21), 217402 (2009). [CrossRef] [PubMed]
  22. X. Xu, B. Sun, E. D. Kim, K. Smirl, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Single charged quantum dot in a strong optical field: absorption, gain, and the ac-Stark effect,” Phys. Rev. Lett. 101(22), 227401 (2008). [CrossRef] [PubMed]
  23. C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas, G. Khitrova, and H. M. Gibbs, “Coulomb memory signatures in the excitonic optical Stark effect,” Phys. Rev. Lett. 82(15), 3112–3115 (1999). [CrossRef]
  24. K. C. Je, H. Ju, M. Treguer, T. Cardinal, and S. H. Park, “Local field-induced optical properties of Ag-coated CdS quantum dots,” Opt. Express 14(17), 7994–8000 (2006). [CrossRef] [PubMed]
  25. G. W. Wen, J. Y. Lin, H. X. Jiang, and Z. Chen, “Quantum-confined Stark effects in semiconductor quantum dots,” Phys. Rev. B Condens. Matter 52(8), 5913–5922 (1995). [CrossRef] [PubMed]
  26. T. Unold, K. Mueller, C. Lienau, T. Elsaesser, and A. D. Wieck, “Optical Stark effect in a quantum dot: ultrafast control of single exciton polarizations,” Phys. Rev. Lett. 92(15), 157401 (2004). [CrossRef] [PubMed]
  27. B. J. Sussman, J. G. Underwood, R. Lausten, M. Y. Ivanov, and A. Stolow, “Quantum control via the dynamic Stark effect: Application to switched rotational wave packets and molecular axis alignment,” Phys. Rev. A 73(5), 053403 (2006). [CrossRef]
  28. J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal hetero-nanostructures,” Nature 466(7302), 91–95 (2010). [CrossRef] [PubMed]
  29. I. M. Soganci, S. Nizamoglu, E. Mutlugun, O. Akin, and H. V. Demir, “Localized plasmon-engineered spontaneous emission of CdSe/ZnS nanocrystals closely-packed in the proximity of Ag nanoisland films for controlling emission linewidth, peak, and intensity,” Opt. Express 15(22), 14289–14298 (2007). [CrossRef] [PubMed]
  30. Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010). [CrossRef] [PubMed]
  31. H. Kobayashi, Y. Hama, Y. Koyama, T. Barrett, C. A. S. Regino, Y. Urano, and P. L. Choyke, “Simultaneous multicolor imaging of five different lymphatic basins using quantum dots,” Nano Lett. 7(6), 1711–1716 (2007). [CrossRef] [PubMed]
  32. G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83(17), 3555–3557 (2003). [CrossRef]
  33. A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticle,” Phys. Rev. B 76(12), 125308 (2007). [CrossRef]
  34. M. Durach, A. Rusina, V. I. Klimov, and M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008). [CrossRef]
  35. A. Kaplan, M. F. Andersen, and N. Davidson, “Suppression of inhomogeneous broadening in rf spectroscopy of optically trapped atoms,” Phys. Rev. A 66(4), 045401 (2002). [CrossRef]
  36. M. A. Mahmoud, A. J. Poncheri, R. L. Phillips, and M. A. El-Sayed, “Plasmonic field enhancement of the exciton-exciton annihilation process in a poly(p-phenyleneethynylene) fluorescent polymer by Ag nanocubes,” J. Am. Chem. Soc. 132(8), 2633–2641 (2010). [CrossRef] [PubMed]
  37. H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, “Colloidal quantum dots as probes of excitation field enhancement in photonic antennas,” ACS Nano 4(8), 4571–4578 (2010). [CrossRef] [PubMed]
  38. M. Combescot and R. Combescot, “Optical Stark effect of the exciton: biexcitonic origin of the shift,” Phys. Rev. B Condens. Matter 40(6), 3788–3801 (1989). [CrossRef] [PubMed]
  39. D. Hulin and M. Joffre, “Excitonic optical Stark redshift: the biexciton signature,” Phys. Rev. Lett. 65(27), 3425–3428 (1990). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited