OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24822–24827

Noise immune cavity enhanced optical heterodyne velocity modulation spectroscopy

Brian M. Siller, Michael W. Porambo, Andrew A. Mills, and Benjamin J. McCall  »View Author Affiliations

Optics Express, Vol. 19, Issue 24, pp. 24822-24827 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (774 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The novel technique of cavity enhanced velocity modulation spectroscopy has recently been demonstrated as the first general absorption technique that allows for sub-Doppler spectroscopy of molecular ions while retaining ion-neutral discrimination. The previous experimental setup has been further improved with the addition of heterodyne detection in a NICE-OHMS setup. This improves the sensitivity by a factor of 50 while retaining sub-Doppler resolution and ion-neutral discrimination. Calibration was done with an optical frequency comb, and line centers for several N 2 + lines have been determined to within an accuracy of 300 kHz.

© 2011 OSA

OCIS Codes
(300.1030) Spectroscopy : Absorption
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6380) Spectroscopy : Spectroscopy, modulation
(300.6390) Spectroscopy : Spectroscopy, molecular
(300.6460) Spectroscopy : Spectroscopy, saturation

ToC Category:

Original Manuscript: July 28, 2011
Revised Manuscript: October 10, 2011
Manuscript Accepted: October 17, 2011
Published: November 18, 2011

Brian M. Siller, Michael W. Porambo, Andrew A. Mills, and Benjamin J. McCall, "Noise immune cavity enhanced optical heterodyne velocity modulation spectroscopy," Opt. Express 19, 24822-24827 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. K. Stephenson and R. J. Saykally, “Velocity modulation spectroscopy of ions,” Chem. Rev. 105, 3220–3234 (2005). [CrossRef] [PubMed]
  2. B. M. Siller, A. A. Mills, and B. J. McCall, “Cavity-enhanced velocity modulation spectroscopy,” Opt. Lett. 35, 1266–1268 (2010). [CrossRef] [PubMed]
  3. A. A. Mills, B. M. Siller, and B. J. McCall, “Precision cavity enhanced velocity modulation spectroscopy,” Chem. Phys. Lett. 501, 1 – 5 (2010). [CrossRef]
  4. J. Ye, L. S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998). [CrossRef]
  5. A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential,” Appl. Phys. B 92, 313–326 (2008). [CrossRef]
  6. R. D. L. Kronig, “On the theory of dispersion of x-rays,” J. Opt. Soc. Am. 12, 547–556 (1926). [CrossRef]
  7. A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Wavelength-modulated noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signal line shapes in the Doppler limit,” J. Opt. Soc. Am. B 26, 1384–1394 (2009). [CrossRef]
  8. E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76, 063112 (2005). [CrossRef]
  9. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31, 97–105 (1983). [CrossRef]
  10. W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144–1155 (2008). [CrossRef]
  11. M. S. Child, Molecular Collision Theory (Academic Press Inc, 1974).
  12. R. G. DeVoe and R. G. Brewer, “Laser-frequency division and stabilization,” Phys. Rev. A. 30, 2827–2829 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited