OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24828–24837

Study of thermally-induced optical bistability and the role of surface treatments in Si-based mid-infrared photonic crystal cavities

Raji Shankar, Irfan Bulu, Rick Leijssen, and Marko Lončar  »View Author Affiliations

Optics Express, Vol. 19, Issue 24, pp. 24828-24837 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1982 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the observation of optical bistability in Si-based photonic crystal cavities operating around 4.5 µm. Time domain measurements indicate that the source of this optical bistability is thermal, with a time constant on the order of 5 µs. Quality (Q) factor improvement is shown by the use of surface treatments (wet processes and annealing), resulting in a significant increase in Q-factor, which in our best devices is on the order of ~45,000 at 4.48 µm. After annealing in a N2 environment, optical bistability is no longer seen in our cavities.

© 2011 OSA

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: September 21, 2011
Revised Manuscript: November 3, 2011
Manuscript Accepted: November 4, 2011
Published: November 18, 2011

Raji Shankar, Irfan Bulu, Rick Leijssen, and Marko Lončar, "Study of thermally-induced optical bistability and the role of surface treatments in Si-based mid-infrared photonic crystal cavities," Opt. Express 19, 24828-24837 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express 17(23), 21108–21117 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-23-21108 . [CrossRef] [PubMed]
  2. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13(7), 2678–2687 (2005), http://www.opticsinfobase.org/abstract.cfm?&id=83310 . [CrossRef] [PubMed]
  3. T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14(1), 377–386 (2006), http://www.opticsinfobase.org/abstract.cfm?id=86921 . [CrossRef] [PubMed]
  4. P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13(3), 801–820 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-3-801 . [CrossRef] [PubMed]
  5. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004). [CrossRef] [PubMed]
  6. R. A. Soref, S. J. Emelett, and A. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006). [CrossRef]
  7. B. Jalali, “Silicon photonics: nonlinear optics in the mid-infrared,” Nat. Photonics 4(8), 506–508 (2010). [CrossRef]
  8. X. P. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4(8), 557–560 (2010). [CrossRef]
  9. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010). [CrossRef]
  10. F. X. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19(16), 15212–15220 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-16-15212 . [CrossRef] [PubMed]
  11. T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18(12), 12127–12135 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-12127 . [CrossRef] [PubMed]
  12. A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett. 97(21), 213501 (2010). [CrossRef]
  13. R. Shankar, R. Leijssen, I. Bulu, and M. Lončar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express 19(6), 5579–5586 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-6-5579 . [CrossRef] [PubMed]
  14. G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Q. Xiong, E. J. Teo, and Y. F. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19(8), 7112–7119 (2011), http://www.opticsinfobase.org/abstract.cfm?uri=oe-19-8-7112 . [CrossRef] [PubMed]
  15. M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett. 87(22), 221110 (2005). [CrossRef]
  16. M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O'Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009). [CrossRef]
  17. M. Brunstein, R. Braive, R. Hostein, A. Beveratos, I. Rober-Philip, I. Sagnes, T. J. Karle, A. M. Yacomotti, J. A. Levenson, V. Moreau, G. Tessier, and Y. De Wilde, “Thermo-optical dynamics in an optically pumped photonic crystal nano-cavity,” Opt. Express 17(19), 17118–17129 (2009), http://www.opticsinfobase.org/abstract.cfm?id=185892 . [CrossRef] [PubMed]
  18. E. Weidner, S. Combrie, A. de Rossi, N. V. Q. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett. 90(10), 101118 (2007). [CrossRef]
  19. W. H. P. Pernice, M. Li, and H. X. Tang, “Time-domain measurement of optical transport in silicon micro-ring resonators,” Opt. Express 18(17), 18438–18452 (2010), http://www.opticsinfobase.org/abstract.cfm?id=205135 . [CrossRef] [PubMed]
  20. X. G. Zhang, Electrochemistry of Silicon (Kluwer Academic/Plenum Publishers, 2001).
  21. D. K. Schroeder, Semiconductor Material and Device Characterization (Wiley Interscience, 2006).
  22. A. de Rossi, M. Lauritano, S. Combrie, Q. V. Tran, and C. Husko, “Interplay of plasma-induced and fast thermal nonlinearities in a GaAs-based photonic crystal nanocavity,” Phys. Rev. A 79(4), 043818 (2009). [CrossRef]
  23. M. W. Lee, C. Grillet, C. Monat, E. Mägi, S. Tomljenovic-Hanic, X. Gai, S. Madden, D. Y. Choi, D. Bulla, B. Luther-Davies, and B. J. Eggleton, “Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavities,” Opt. Express 18(25), 26695–26703 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-25-26695 . [CrossRef] [PubMed]
  24. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46(33), 8118–8133 (2007). [CrossRef] [PubMed]
  25. M. Borselli, T. J. Johnson, and O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88(13), 131114 (2006). [CrossRef]
  26. Y. Yamashita, K. Namba, Y. Nakato, Y. Nishioka, and H. Kobayashi, “Spectroscopic observation of interface states of ultrathin silicon oxide,” J. Appl. Phys. 79(9), 7051–7057 (1996). [CrossRef]
  27. H. Froitzheim, H. Lammering, and H. L. Gunter, “Energy-loss-spectroscopy studies on the adsorption of hydrogen on cleaved Si(111)-(2x1) surfaces,” Phys. Rev. B 27(4), 2278–2284 (1983). [CrossRef]
  28. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005). [CrossRef]
  29. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009). [CrossRef]
  30. Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. W. Frank, S. Tang, R. Ilic, and M. Loncar, “Ultrasensitive on-chip photonic crystal nanobeam sensor using optical bistability,” in Quantum Electronics and Laser Science Conference, Technical Digest (CD) (Optical Society of America, 2011), paper QThH6, http://www.opticsinfobase.org/abstract.cfm?uri=QELS-2011-QThH6 .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited