OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 24871–24883

Near-threshold harmonics from a femtosecond enhancement cavity-based EUV source: effects of multiple quantum pathways on spatial profile and yield

T. J. Hammond, Arthur K. Mills, and David J. Jones  »View Author Affiliations

Optics Express, Vol. 19, Issue 25, pp. 24871-24883 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2381 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the photon flux and far-field spatial profiles for near-threshold harmonics produced with a 66 MHz femtosecond enhancement cavity-based EUV source operating in the tight-focus regime. The effects of multiple quantum pathways in the far-field spatial profile and harmonic yield show a strong dependence on gas jet dynamics, particularly nozzle diameter and position. This simple system, consisting of only a 700 mW Ti:Sapphire oscillator and an enhancement cavity produces harmonics up to 20 eV with an estimated 30–100 μW of power (intracavity) and > 1μW (measured) of power spectrally-resolved and out-coupled from the cavity. While this power is already suitable for applications, a quantum mechanical model of the system indicates substantial improvements should be possible with technical upgrades.

© 2011 OSA

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.4780) Lasers and laser optics : Optical resonators
(190.4160) Nonlinear optics : Multiharmonic generation

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 1, 2011
Revised Manuscript: October 7, 2011
Manuscript Accepted: October 9, 2011
Published: November 21, 2011

T. J. Hammond, Arthur K. Mills, and David J. Jones, "Near-threshold harmonics from a femtosecond enhancement cavity-based EUV source: effects of multiple quantum pathways on spatial profile and yield," Opt. Express 19, 24871-24883 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Lindner, W. Stremme, M. G. Schätzel, F. Grasbon, G. G. Paulus, H. Walther, R. Hartmann, and L. Strüder, “High-order harmonic generation at a repetition rate of 100 kHz,” Phys. Rev. A 68, 013814 (2003). [CrossRef]
  2. J. Boullet, Y. Zaouter, J. Limpert, S. Petit, Y. Mairesse, B. Fabre, J. Higuet, E. Mével, E. Constant, and E. Cormier, “High-order harmonic generation at a megahertz-level repetition rate directly driven by an ytterbium-doped-fiber chirped-pulse amplification system,” Opt. Lett. 34, 1489–1491 (2009). [CrossRef] [PubMed]
  3. A. Vernaleken, J. Weitenberg, T. Sartorius, P. Russbueldt, W. Schneider, S. L. Stebbings, M. F. Kling, P. Hommelhoff, H.-D. Hoffmann, R. Poprawe, F. Krausz, T. W. Hänsch, and T. Udem, “Single-pass high-harmonic generation at 20.8 MHz repetition rate,” Opt. Lett. 36, 3428–3430 (2011). [CrossRef] [PubMed]
  4. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hansch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005). [CrossRef] [PubMed]
  5. A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009). [CrossRef]
  6. D. Z. Kandula, C. Gohle, T. J. Pinkert, W. Ubachs, and K. S. E. Eikema, “Extreme ultraviolet frequency comb metrology,” Phys. Rev. Lett. 105, 063001 (2010). [CrossRef] [PubMed]
  7. A. Cingoz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” arXiv:1109.1871 (2011).
  8. R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via High-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94, 193201 (2005). [CrossRef] [PubMed]
  9. I. Hartl, T. R. Schibli, A. Marcinkevicius, D. C. Yost, D. D. Hudson, M. E. Fermann, and J. Ye, “Cavity-enhanced similariton Yb-fiber laser frequency comb: 3x1014 W/cm2 peak intensity at 136 MHz,” Opt. Lett. 32, 2870–2872 (2007). [CrossRef] [PubMed]
  10. B. Bernhardt, A. Ozawa, I. Pupeza, A. Vernaleken, Y. Kobayashi, R. Holzwarth, E. Fill, F. Krausz, T. W. Hänsch, and T. Udem, “Green enhancement cavity for frequency comb generation in the extreme ultraviolet,” in Quantum Electronics and Laser Science Conference, (Optical Society of America, 2011), p. QTuF3.
  11. D. R. Carlson, J. Lee, J. Mongelli, E. M. Wright, and R. J. Jones, “Intracavity ionization and pulse formation in femtosecond enhancement cavities,” Opt. Lett. 36, 2991–2993 (2011). [CrossRef] [PubMed]
  12. T. K. Allison, A. Cingöz, D. C. Yost, and J. Ye, “Cavity Extreme Nonlinear Optics,” ArXiv e-prints (2011).
  13. J. A. Hostetter, J. L. Tate, K. J. Schafer, and M. B. Gaarde, “Semiclassical approaches to below-threshold harmonics,” Phys. Rev. A 82, 023401 (2010). [CrossRef]
  14. T. C. Briles, D. C. Yost, A. Cingöz, J. Ye, and T. R. Schibli, “Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth,” Opt. Express 18, 9739–9746 (2010). [CrossRef] [PubMed]
  15. D. C. Yost, T. R. Schibli, and J. Ye, “Efficient output coupling of intracavity high-harmonic generation,” Opt. Lett. 33, 1099–1101 (2008). [CrossRef] [PubMed]
  16. P. Salières, A. L’Huillier, P. Antoine, and M. Lewenstein, “Study of the spatial and temporal coherence of high-order harmonics,” in Advances In Atomic, Molecular, and Optical Physics (1999), Vol.  41, pp. 83–142. [CrossRef]
  17. J. H. Eberly, Q. Su, and J. Javanainen, “High-order harmonic production in multiphoton ionization,” J. Opt. Soc. Am. B 6, 1289–1298 (1989). [CrossRef]
  18. S. Rae, X. Chen, and K. Burnett, “Saturation of harmonic generation in one- and three-dimensional atoms,” Phys. Rev. A 50, 1946–1949 (1994). [CrossRef] [PubMed]
  19. M. B. Gaarde, F. Salin, E. Constant, P. Balcou, K. J. Schafer, K. C. Kulander, and A. L’Huillier, “Spatiotemporal separation of high harmonic radiation into two quantum path components,” Phys. Rev. A 59, 1367–1373 (1999). [CrossRef]
  20. A. Anders, “Recombination of a Xenon Plasma Jet,” Contrib. Plasma Phys. 27, 373–398 (1987).
  21. G. L. Yudin and M. Y. Ivanov, “Nonadiabatic tunnel ionization: Looking inside a laser cycle,” Phys. Rev. A 64, 013409 (2001). [CrossRef]
  22. http://openfoamwiki.net/index.php/TestLucaG .
  23. M. Chen, M. R. Gerrity, S. Backus, T. Popmintchev, X. Zhou, P. Arpin, X. Zhang, H. C. Kapteyn, and M. M. Murnane, “Spatially coherent, phase matched, high-order harmonic EUV beams at 50 kHz,” Opt. Express 17, 17376–17383 (2009). [CrossRef] [PubMed]
  24. P. Balcou, P. Salières, A. L’Huillier, and M. Lewenstein, “Generalized phase-matching conditions for high harmonics: The role of field-gradient forces,” Phys. Rev. A 55, 3204–3210 (1997). [CrossRef]
  25. http://www.pcgrate.com .
  26. D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuum-ultraviolet frequency combs from below-threshold harmonics,” Nat. Phys. 5, 815–820 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited