OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 24905–24921

A chip-scale integrated cavity-electro-optomechanics platform

M. Winger, T. D. Blasius, T. P. Mayer Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter  »View Author Affiliations


Optics Express, Vol. 19, Issue 25, pp. 24905-24921 (2011)
http://dx.doi.org/10.1364/OE.19.024905


View Full Text Article

Enhanced HTML    Acrobat PDF (3142 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an integrated optomechanical and electromechanical nanocavity, in which a common mechanical degree of freedom is coupled to an ultrahigh-Q photonic crystal defect cavity and an electrical circuit. The system allows for wide-range, fast electrical tuning of the optical nanocavity resonances, and for electrical control of optical radiation pressure back-action effects such as mechanical amplification (phonon lasing), cooling, and stiffening. These sort of integrated devices offer a new means to efficiently interconvert weak microwave and optical signals, and are expected to pave the way for a new class of micro-sensors utilizing optomechanical back-action for thermal noise reduction and low-noise optical read-out.

© 2011 OSA

OCIS Codes
(220.4880) Optical design and fabrication : Optomechanics
(230.3120) Optical devices : Integrated optics devices
(230.4110) Optical devices : Modulators
(350.2460) Other areas of optics : Filters, interference
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(230.4685) Optical devices : Optical microelectromechanical devices
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(230.5298) Optical devices : Photonic crystals

ToC Category:
Integrated Optics

History
Original Manuscript: September 23, 2011
Revised Manuscript: November 17, 2011
Manuscript Accepted: November 18, 2011
Published: November 22, 2011

Citation
M. Winger, T. D. Blasius, T. P. Mayer Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, "A chip-scale integrated cavity-electro-optomechanics platform," Opt. Express 19, 24905-24921 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-25-24905


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. F. Nichols and G. F. Hull, “A preliminary communication on the pressure of heat and light radiation,” Phys. Rev.13(5), 307–320 (1901). [CrossRef]
  2. T. J. Kippenberg and K. J. Vahala, “Cavity Opto-Mechanics,” Opt. Express15(25), 17172–17205 (2007). [CrossRef] [PubMed]
  3. T. J. Kippenberg and K. J. Vahala, “Cavity Optomechanics: Back-Action at the Mesoscale,” Science321(5893), 1172–1176 (2008). [CrossRef] [PubMed]
  4. I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photonics3(4), 201–205 (2009). [CrossRef]
  5. V. B. Braginskiĭ and A. B. Manukin, Measurement of Weak Forces in Physics Experiments (University of Chicago Press, Chicago, 1977).
  6. V. B. Braginskiĭ, F. Y. Khalili, and K. S. Thorne, Quantum Measurement (Cambridge University Press, 1992). [CrossRef]
  7. J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics3(8), 478–483 (2009). [CrossRef]
  8. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–556 (2009). [CrossRef] [PubMed]
  9. O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, and A. Heidman, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature444(7115), 71–74 (2006). [CrossRef] [PubMed]
  10. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity,” Phys. Rev. Lett.95(3), 033901 (2005). [CrossRef] [PubMed]
  11. S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature444(7115), 67–70 (2006). [CrossRef] [PubMed]
  12. S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically Induced Transparency,” Science330(6010), 1520–1523 (2010). [CrossRef] [PubMed]
  13. J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature471(7337), 204–208 (2011). [CrossRef] [PubMed]
  14. A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472(7341), 69–73 (2011). [CrossRef] [PubMed]
  15. A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys.10, 095015 (2008). [CrossRef]
  16. J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011). [CrossRef] [PubMed]
  17. C. A. Regal, J. D. Teufel, and K. W. Lehnert, “Measuring nanomechanical motion with a microwave cavity interferometer,” Nat. Physics4(7), 555–560 (2008). [CrossRef]
  18. J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature475(7356) (2011). [CrossRef] [PubMed]
  19. K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and Control of a Cavity Optoelectromechanical System,” Phys. Rev. Lett.104(12), 123604 (2010). [CrossRef] [PubMed]
  20. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical Oscillation and Cooling Actuated by the Optical Gradient Force,” Phys. Rev. Lett.103, 103601 (2009). [CrossRef] [PubMed]
  21. A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett.24(4), 156–159 (1970). [CrossRef]
  22. A. H. Safavi-Naeini and O. Painter, “Proposal for an optomechanical travelling wave phonon-photon translator,” New J. Phys.13, 013017 (2011). [CrossRef]
  23. K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum.76, 061101 (2005). [CrossRef]
  24. M. Eichenfield, J. Chan, R. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature462(7269), 78–82 (2009). [CrossRef] [PubMed]
  25. A. H. Safavi-Naeini, T. P. Mayer Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett.97(18), 181106 (2010). [CrossRef]
  26. E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, T. J. Kippenberg, and I. Robert-Philip, “Optomechanical Coupling in a Two-Dimensional Photonic Crystal Defect Cavity,” Phys. Rev. Lett.106(20), 203902 (2001). [CrossRef]
  27. I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Lončar, “Programmable photonic crystal nanobeam cavities,” Opt. Express18(8), 8705–8712 (2010). [CrossRef] [PubMed]
  28. R. Perahia, J. D. Cohen, S. Meenehan, T. P. Mayer Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett.97(19), 191112 (2010). [CrossRef]
  29. L. Midolo, P. J. van Veldhoven, M. A. Dündar, R. Nötzel, and A. Fiore, “Electromechanical wavelength tuning of double-membrane photonic crystal cavities,” Appl. Phys. Lett.98(21), 21120 (2011). [CrossRef]
  30. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Mater.4(3), 207–210 (2010). [CrossRef]
  31. See http://www.comsol.com/
  32. S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Physics5(7), 485–488 (2009). [CrossRef]
  33. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature452(7183), 72–U5 (2008). [CrossRef] [PubMed]
  34. T. P. Mayer Alegre, R. Perahia, and O. Painter, “Optomechanical zipper cavity lasers: theoretical anaylysis of tuning range and stability,” Opt. Express18(8), 7872–7885 (2010). [CrossRef]
  35. C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, “An optical fiber-taper probe for wafer-scale microphotonic device characterization,” Opt. Express15(8), 4745–4752 (2010). [CrossRef]
  36. P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express13(3), 801–820 (2005). [CrossRef] [PubMed]
  37. D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature444(7115), 75–78 (2006). [CrossRef] [PubMed]
  38. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E65, 066611 (2002). [CrossRef]
  39. J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: A brief review,” J. Quant. Spectrosc. Radiat. Transfer17, 233–236 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited