OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 24950–24956

Measurement of electron paramagnetic resonance using terahertz time-domain spectroscopy

Kohei Kozuki, Takeshi Nagashima, and Masanori Hangyo  »View Author Affiliations

Optics Express, Vol. 19, Issue 25, pp. 24950-24956 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1302 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a frequency-domain electron spin resonance (ESR) measurement system using terahertz time-domain spectroscopy. A crossed polarizer technique is utilized to increase the sensitivity in detecting weak ESR signals of paramagnets caused by magnetic dipole transitions between magnetic sublevels. We demonstrate the measurements of ESR signal of paramagnetic copper(II) sulfate pentahydrate with uniaxial anisotropy of the g-factor under magnetic fields up to 10 T. The lineshape of the obtained ESR signals agrees well with the theoretical predictions for a powder sample with the uniaxial anisotropy.

© 2011 OSA

OCIS Codes
(260.2130) Physical optics : Ellipsometry and polarimetry
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: September 30, 2011
Revised Manuscript: November 3, 2011
Manuscript Accepted: November 7, 2011
Published: November 22, 2011

Kohei Kozuki, Takeshi Nagashima, and Masanori Hangyo, "Measurement of electron paramagnetic resonance using terahertz time-domain spectroscopy," Opt. Express 19, 24950-24956 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. For text, A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Metal Ions (Clarendon Press, 1970).
  2. K. Möbius, A. Savitsky, A. Schnegg, M. Plato, and M. Fuchst, “High-field EPR spectroscopy applied to biological systems: characterization of molecular switches for electron and ion transfer,” Phys. Chem. Chem. Phys. 7(1), 19–42 (2005). [CrossRef] [PubMed]
  3. M. Bennati and T. F. Prisner, “New developments in high field electron paramagnetic resonance with applications in structural biology,” Rep. Prog. Phys. 68(2), 411–448 (2005). [CrossRef]
  4. H. Hachisuka, K. Awaga, T. Yokoyama, T. Kubo, T. Goto, and H. Nojiri, “Structure and magnetic properties of the single-molecule magnet [Mn11CrO12(O2CCH3)16(H2O)4]∙2CH3COOH∙4H2O: magnetization manipulation and dipolar-biased tunneling in a Mn11Cr∕Mn12 mixed crystal” Phys. Rev. B 70(10), 104427 (2004). [CrossRef]
  5. M. Yoshida, K. Shiraki, S. Okubo, H. Ohta, T. Ito, H. Takagi, M. Kaburagi, and Y. Ajiro, “Energy structure of a finite Haldane chain in Y2BaNi0.96Mg0.04O5 studied by high field electron spin resonance,” Phys. Rev. Lett. 95(11), 117202 (2005). [CrossRef] [PubMed]
  6. S. A. Zvyagin, M. Ozerov, E. Cizmár, D. Kamenskyi, S. Zherlitsyn, T. Herrmannsdörfer, J. Wosnitza, R. Wünsch, and W. Seidel, “Terahertz-range free-electron laser electron spin resonance spectroscopy: techniques and applications in high magnetic fields,” Rev. Sci. Instrum. 80(7), 073102 (2009). [CrossRef] [PubMed]
  7. L. Mihály, D. Talbayev, L. F. Kiss, J. Zhou, T. Fehér, and A. Jánossy, “Field-frequency mapping of the electron spin resonance in the paramagnetic and antiferromagnetic states of LaMnO3,” Phys. Rev. B 69(2), 024414 (2004). [CrossRef]
  8. F. El Hallak, J. van Slageren, J. Gómez-Segura, D. Ruiz-Molina, and M. Dressel, “High-frequency ESR and frequency domain magnetic resonance spectroscopic studies of single molecule magnets in frozen solution,” Phys. Rev. B 75(10), 104403 (2007). [CrossRef]
  9. N. Kida, Y. Takahashi, J. S. Lee, R. Shimano, Y. Yamasaki, Y. Kaneko, S. Miyahara, N. Furukawa, T. Arima, and Y. Tokura, “Terahertz time-domain spectroscopy of electromagnons in multiferroic perovskite manganites,” J. Opt. Soc. Am. B 26(9), A35–A51 (2009). [CrossRef]
  10. Y. Ikebe and R. Shimano, “Characterization of doped silicon in low carrier density region by terahertz frequency Faraday effect,” Appl. Phys. Lett. 92(1), 012111 (2008). [CrossRef]
  11. Y. Ikebe and R. Shimano, “Characterization of doped silicon in low carrier density region by terahertz frequency Faraday effect: erratum,” Appl. Phys. Lett. 92, 149901 (2008).
  12. F. Bloch, “Nuclear Induction,” Phys. Rev. 70(7-8), 460–474 (1946). [CrossRef]
  13. R. D. Arnold and A. F. Kip, “Paramagnetic resonance absorption in two sulfates of copper,” Phys. Rev. 75(8), 1199–1205 (1949). [CrossRef]
  14. H. Ohta, N. Yamauchi, T. Nanba, M. Motokawa, S. Kawamata, and K. Okuda, “EPR and AFMR of Li2CuO2 in submillimeter wave region,” J. Phys. Soc. Jpn. 62(2), 785–792 (1993). [CrossRef]
  15. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999), Chap. 1.6.
  16. J. Krzystek, A. Sienkiewicz, L. Pardi, and L. C. Brunel, “DPPH as a Standard for High-Field EPR,” J. Magn. Reson. 125(1), 207–211 (1997). [CrossRef] [PubMed]
  17. J. van Tol, L.-C. Brunel, and R. J. Wylde, “A quasioptical transient electron spin resonance spectrometer operating at 120 and 240 GHz,” Rev. Sci. Instrum. 76(7), 074101 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited