## Observation of Young’s double-slit interference with the three-photon N00N state |

Optics Express, Vol. 19, Issue 25, pp. 24957-24966 (2011)

http://dx.doi.org/10.1364/OE.19.024957

Enhanced HTML Acrobat PDF (1141 KB)

### Abstract

Spatial interference of quantum mechanical particles exhibits a fundamental feature of quantum mechanics. A two-mode entangled state of N particles known as N00N state can give rise to non-classical interference. We report the first experimental observation of a three-photon N00N state exhibiting Young’s double-slit type spatial quantum interference. Compared to a single-photon state, the three-photon entangled state generates interference fringes that are three times denser. Moreover, its interference visibility of 0.49 ± 0.09 is well above the limit of 0.1 for spatial super-resolution of classical origin.

© 2011 OSA

**OCIS Codes**

(270.0270) Quantum optics : Quantum optics

(270.4180) Quantum optics : Multiphoton processes

(270.5585) Quantum optics : Quantum information and processing

**ToC Category:**

Quantum Optics

**History**

Original Manuscript: September 16, 2011

Revised Manuscript: October 21, 2011

Manuscript Accepted: November 14, 2011

Published: November 22, 2011

**Citation**

Yong-Su Kim, Osung Kwon, Sang Min Lee, Jong-Chan Lee, Heonoh Kim, Sang-Kyung Choi, Hee Su Park, and Yoon-Ho Kim, "Observation of Young’s double-slit interference with the three-photon N00N state," Opt. Express **19**, 24957-24966 (2011)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-25-24957

Sort: Year | Journal | Reset

### References

- R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison Wesley, 1965), Vol. III.
- Y.-H. Kim, R. Yu, S. P. Kulik, and Y. Shih, “Delayed “choice” quantum eraser,” Phys. Rev. Lett.84, 1 (2000). [CrossRef] [PubMed]
- U. Sinha, C. Couteau, T. Jennewein, R. Laflamme, and G. Weihs, “Ruling out multi-order interference in quantum mechanics,” Science329, 418 (2010). [CrossRef] [PubMed]
- J. Jacobson, G. Björk, I. Chuang, and Y. Yamamoto, “Photonic de Broglie wave,” Phys. Rev. Lett.74, 4835 (1995). [CrossRef] [PubMed]
- A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, and P. Grangier, “Generation of optical ‘Schrödinger cats’ from photon number states,” Nature448, 784 (2007). [CrossRef] [PubMed]
- J. P. Dowling, “Quantum optical metrology—the lowdown of high-N00N states,” Contemp. Phys.49, 125 (2008). [CrossRef]
- A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett.85, 2733 (2000). [CrossRef] [PubMed]
- P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantum-interferometric optical lithography: Towards arbitrary two-dimensional patterns,” Phys. Rev. A63, 063407 (2001). [CrossRef]
- V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science306, 1330 (2004). [CrossRef] [PubMed]
- O. Kwon, Y.-S. Ra, and Y.-H. Kim, “Observing photonic de Broglie waves without the maximally-path-entangled NOON state,” Phys. Rev. A81, 063801 (2010). [CrossRef]
- J. Fiurášek, “Conditional generation of N-photon entangled states of light,” Phys. Rev. A65, 053818 (2002). [CrossRef]
- H. Cable and J. P. Dowling, “Efficient generation of large number-path entanglement using only linear optics and feed-forward,” Phys. Rev. Lett.99, 163604 (2007). [CrossRef] [PubMed]
- K. T. Kapale and J. P. Dowling, “Bootstrapping approach for generating maximally path-entangled photon states,” Phys. Rev. Lett.99, 053602 (2007). [CrossRef] [PubMed]
- M. D’Angelo, A. Garuccio, and V. Tamma, “Toward real maximally path-entangled N -photon-state sources,” Phys. Rev. A77, 063826 (2008). [CrossRef]
- K. Edamatsu, R. Shimizu, and T. Itoh, “Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion,” Phys. Rev. Lett.89, 213601 (2002). [CrossRef] [PubMed]
- E. J. S. Fonseca, C. H. Monken, and S. Pádua, “Measurement of the de Broglie wavelength of a multi photon wave packet,” Phys. Rev. Lett.82, 2868 (1999) [CrossRef]
- M. D’Angelo, M. V. Chekhova, and Y. H. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett.87, 013602 (2001). [CrossRef]
- Y. Kawabe, H. Fujiwara, R. Okamoto, K. Sasaki, and S. Takeuchi, “Quantum interference fringes beating the diffraction limit,” Opt. Express15, 14244 (2007). [CrossRef] [PubMed]
- M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature429, 161 (2004). [CrossRef] [PubMed]
- H. Kim, H.-S. Park, and S.-K. Choi, “Three-photon N00N states generated by photon subtraction from double photon pairs,” Opt. Express17, 19720 (2009). [CrossRef] [PubMed]
- P. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, “de Broglie wavelength of a non-local four-photon state,” Nature429, 158 (2004). [CrossRef] [PubMed]
- F. W. Sun, B. H. Liu, Y. F. Huang, Z. Y. Ou, and G. C. Guo, “Observation of the four-photon de Broglie wavelength by state-projection measurement,” Phys. Rev. A74, 033812 (2006). [CrossRef]
- T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science316, 726 (2007). [CrossRef] [PubMed]
- I. Afek, O. Ambar, and Y. Silberberg, “High-N00N states by mixing quantum and classical light,” Science328, 879 (2010). [CrossRef] [PubMed]
- C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59, 2044 (1987). [CrossRef] [PubMed]
- S. J. Bentley and R. W. Boyd, “Nonlinear optical lithography with ultra-high sub-Rayleigh resolution,” Opt. Express12, 5735 (2004). [CrossRef] [PubMed]
- I. Afek, O. Ambar, and Y. Silberberg, “Classical bound for Mach-Zehnder superresolution,” Phys. Rev. Lett.104, 123602 (2010). [CrossRef] [PubMed]
- E. Yablonovitch and R. B. Vrijen, “Optical projection lithography at half the Rayleigh resolution limit by two-photon exposure,” Opt. Eng.38, 334 (1999). [CrossRef]
- A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed., (Oxford University Press, 2006).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.