OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 24967–24979

Design and optimization of low-loss high-birefringence hollow fiber at terahertz frequency

Xiao-Li Tang, Bang-Shan Sun, and Yi-Wei Shi  »View Author Affiliations


Optics Express, Vol. 19, Issue 25, pp. 24967-24979 (2011)
http://dx.doi.org/10.1364/OE.19.024967


View Full Text Article

Enhanced HTML    Acrobat PDF (2578 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Transmission characteristics at terahertz (THz) frequencies are numerically analyzed for elliptical dielectric-coated metallic hollow fiber (DMHF). Attenuation constants, group velocity, modal birefringence, and modal power fraction in the air core are presented. Optimization of the fiber geometry is investigated to reduce the attenuation and to increase the birefringence simultaneously. Modal birefringence of 3.3×10−2 and attenuation of 2.4 dB/m are expected. It is found that a desirable ellipticity of the air core is around 3. And both the modal birefringence and the attenuation constant are inversely proportional to the cube of the core size. Multiple dielectric layers significantly reduce the attenuation and meanwhile have little influence on the modal birefringence.

© 2011 OSA

OCIS Codes
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining
(230.7370) Optical devices : Waveguides
(260.1440) Physical optics : Birefringence
(040.2235) Detectors : Far infrared or terahertz

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 13, 2011
Revised Manuscript: October 27, 2011
Manuscript Accepted: October 27, 2011
Published: November 22, 2011

Citation
Xiao-Li Tang, Bang-Shan Sun, and Yi-Wei Shi, "Design and optimization of low-loss high-birefringence hollow fiber at terahertz frequency," Opt. Express 19, 24967-24979 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-25-24967


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. B. Byrne, M. U. Shaukat, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Simultaneous measurement of orthogonal components of polarization in a free-space propagating terahertz signal using electro-optic detection,” Appl. Phys. Lett.98(15), 151104 (2011). [CrossRef]
  2. N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Flectcher, O. Mamer, A. Lesimple, and J. Keith, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett.92(1), 011131 (2008). [CrossRef]
  3. J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol.4(8), 1071–1089 (1986). [CrossRef]
  4. M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express16(1), 7–12 (2008). [CrossRef] [PubMed]
  5. G.-B. Ren, Y.-D. Gong, P. Shum, X. Yu, and J.-J. Hu, “Polarization Maintaining Air-Core Bandgap Fibers for Terahertz Wave Guiding,” IEEE J. Quantum Electron.45(5), 506–513 (2009). [CrossRef]
  6. S. Atakaramians, S. Afshar Vahid, B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun.282(1), 36–38 (2009). [CrossRef]
  7. S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express17(16), 14053–15062 (2009). [CrossRef] [PubMed]
  8. H.-B. Chen, D.-R. Chen, and Z. Hong, “Squeezed lattice elliptical-hole terahertz fiber with high birefringence,” Appl. Opt.48(20), 3943–3947 (2009). [CrossRef] [PubMed]
  9. D.-R. Chen and H. Y. Tam, “Highly birefringent terahertz fibers based on super-cell structures,” J. Lightwave Technol.28(12), 1858–1863 (2010). [CrossRef]
  10. D.-R. Chen, “Mode property of terahertz polymer tube,” J. Lightwave Technol.28(18), 2708–2713 (2010). [CrossRef]
  11. J.-L. Wang, J.-Q. Yao, H.-M. Chen, and Z.-Y. Li, “A simple birefringent terahertz waveguide based on polymer elliptical tube,” Chin. Phys. Lett.28(1), 014207 (2011). [CrossRef]
  12. S. Atakaramians, S. Afshar V, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express16(12), 8845–8854 (2008). [CrossRef] [PubMed]
  13. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express16(9), 6340–6351 (2008). [CrossRef] [PubMed]
  14. Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B25(12), 1949–1954 (2008). [CrossRef]
  15. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett.32(20), 2945–2947 (2007). [CrossRef] [PubMed]
  16. O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express18(3), 1898–1903 (2010). [CrossRef] [PubMed]
  17. C. C. Gregory and J. A. Harrington, “Attenuation, modal, and polarization properties of n < 1, hollow dielectric waveguides,” Appl. Opt.32(27), 5302–5309 (1993). [CrossRef] [PubMed]
  18. D. Gibson and J. A. Harrington, “Tapered and noncircular hollow glass waveguides,” Proc. SPIE3596, 8–13 (1999). [CrossRef]
  19. D. Gibson and J. A. Harrington, “Polarization-maintaining hollow glass waveguides with noncircular bore,” Opt. Eng.43(3), 568–572 (2004). [CrossRef]
  20. M. Miyagi and S. Kawakami, “Design theory of dielectric coated circular metallic waveguides for infrared Transmission,” J. Lightwave Technol.2(2), 116–126 (1984). [CrossRef]
  21. X.-L. Tang, Y.-W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett.34(14), 2231–2233 (2009). [CrossRef] [PubMed]
  22. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22(7), 1099–20 (1983). [CrossRef] [PubMed]
  23. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983), Chap. 20.
  24. R. K. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng.37(9), 2454–2458 (1998). [CrossRef]
  25. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express18(1), 309–322 (2010). [CrossRef] [PubMed]
  26. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2—Si multilayer structures,” Appl. Phys. Lett.49(1), 13–15 (1986). [CrossRef]
  27. C.-H. Lai, J.-Y. Lu, and H.-C. Chang, “Adding metallic layers outside terahertz antiresonant reflecting waveguides: the influence on loss spectra,” J. Opt. Soc. Am. B28(9), 2200–2206 (2011). [CrossRef]
  28. S. Ouyang, Y.-W. Shi, Y. Matsuura, and M. Miyagi, “Rugged distal tips for CO2 laser medicine,” Opt. Laser Technol.35(1), 65–68 (2003). [CrossRef]
  29. A. Sengupta, A. Bandyopadhyay, B. F. Bowden, J. A. Harrington, and J. F. Federici, “Characterisation of olefin copolymers using terahertz spectroscopy,” Electron. Lett.42(25), 1477–1479 (2006). [CrossRef]
  30. Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz Dielectric Properties of Polymers,” J. Korean Phys. Soc.49, 513–517 (2006).
  31. X. Lin, Y.-W. Shi, K.-R. Sui, X.-S. Zhu, K. Iwai, and M. Miyagi, “Fabrication and characterization of infrared hollow fiber with multi- SiO2 and AgI inner-coating layers,” Appl. Opt.48(35), 6765–6769 (2009). [CrossRef] [PubMed]
  32. B.-S. Sun, X.-L. Tang, Y.-W. Shi, K. Iwai, and M. Miyagi, “Optimal design for hollow fiber inner-coated by dielectric layers with surface roughness,” Opt. Lett.36(17), 3461–3463 (2011). [CrossRef] [PubMed]
  33. C. Jansen, S. Member, F. Neubauer, J. Helbig, D. M. Mittleman, and M. Koch, “Flexible Bragg reflectors for the terahertz regime composed of polymeric compounds,” in IRMMW, A–TjKh–NN4N (2007).
  34. A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B28(4), 896–907 (2011). [CrossRef]
  35. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express15(23), 15086–15092 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited