OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25006–25021

Circular scanning fluorescence correlation spectroscopy on membranes

Zdeněk Petrášek, Susan Derenko, and Petra Schwille  »View Author Affiliations


Optics Express, Vol. 19, Issue 25, pp. 25006-25021 (2011)
http://dx.doi.org/10.1364/OE.19.025006


View Full Text Article

Enhanced HTML    Acrobat PDF (1447 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We discuss circular scanning Fluorescence Correlation Spectroscopy (sFCS) as a simple extension of standard FCS for accurate, robust and fast diffusion measurements on membranes. The implementation is based on a straightforward conversion of a conventional FCS instrument to a sFCS device by mounting a mirror onto a two-axis piezo scanner. The measurement volume is scanned in a circle with sub-micron radius, allowing the determination of diffusion coefficients and concentrations without any a priori knowledge of the size of the detection volume. This is highly important in measurements on two-dimensional surfaces, where the volume size, and therefore the quantitative outcome of the experiment, is determined by the relative position of the surface and the objective focus, a parameter difficult to control in practice. The technique is applied to diffusion measurements on model membrane systems: supported lipid bilayers and giant unilamellar vesicles. We show that the method is insensitive to membrane positioning and to disturbing processes on faster or slower time scales than diffusion, and yields accurate results even for fluctuating or drifting membranes. Its robustness, short measurement times, and small size of the probed area makes this technique particularly attractive for analyzing the properties of membranes and molecules diffusing and interacting within them.

© 2011 OSA

OCIS Codes
(040.3780) Detectors : Low light level
(180.1790) Microscopy : Confocal microscopy
(180.2520) Microscopy : Fluorescence microscopy
(290.1990) Scattering : Diffusion
(240.6648) Optics at surfaces : Surface dynamics

ToC Category:
Microscopy

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Zdeněk Petrášek, Susan Derenko, and Petra Schwille, "Circular scanning fluorescence correlation spectroscopy on membranes," Opt. Express 19, 25006-25021 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-25-25006


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers13, 1–27 (1974). [CrossRef]
  2. R. Rigler and E. S. Elson, eds., Fluorescence Correlation Spectroscopy. Theory and Application, Chemical Physics Series (Springer Verlag, Berlin, 2001), 1st ed. [CrossRef]
  3. K. Bacia and P. Schwille, “A dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy,” Methods29, 74–85 (2003). [CrossRef] [PubMed]
  4. D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, “Mobility measurement by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J.16, 1055–1069 (1976). [CrossRef] [PubMed]
  5. M. J. Saxton and K. Jacobson, “Single-particle tracking: Applications to membrane dynamics,” Annu. Rev. Biophys. Biomol. Struct.26, 373–399 (1997). [CrossRef] [PubMed]
  6. A. J. García-Sáez and P. Schwille, “Fluorescence correlation spectroscopy for the study of membrane dynamics and protein/lipid interactions,” Methods46, 116–122 (2008). [CrossRef] [PubMed]
  7. R. Macháň and M. Hof, “Lipid diffusion in planar membranes investigated by fluorescence correlation spectroscopy,” Biochim. Biophys. Acta Biomembr.1798, 1377–1391 (2010). [CrossRef]
  8. P. Schwille, F. J. Meyer-Almes, and R. Rigler, “Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution,” Biophys. J.72, 1878–1886 (1997). [CrossRef] [PubMed]
  9. K. Bacia, S. A. Kim, and P. Schwille, “Fluorescence cross-correlation spectroscopy in living cells,” Nat. Methods3, 83–89 (2006). [CrossRef] [PubMed]
  10. J. Enderlein, I. Gregor, D. Patra, and J. Fitter, “Art and artefacts of fluorescence correlation spectroscopy,” Curr. Pharm. Biotechnol.5, 155–161 (2004). [CrossRef] [PubMed]
  11. S. Milon, R. Hovius, H. Vogel, and T. Wohland, “Factors influencing fluorescence correlation spectroscopy measurements on membranes: simulations and experiments,” Chem. Phys.288, 171–186 (2003). [CrossRef]
  12. A. Benda, M. Beneš, V. Mareček, A. Lhotský, W. T. Hermens, and M. Hof, “How to determine diffusion coefficients in planar phospholipid systems by confocal fluorescence correlation spectroscopy,” Langmuir19, 4120–4126 (2003). [CrossRef]
  13. E. Gielen, M. Vandeven, A. Margineanu, P. Dedecker, M. Van der Auweraer, Y. Engelborghs, J. Hofkens, and M. Ameloot, “On the use of z-scan fluorescence correlation experiments on giant unilamellar vesicles,” Chem. Phys. Lett.469, 110–114 (2009). [CrossRef]
  14. T. Dertinger, V. Pacheco, I. von der Hocht, R. Hartmann, I. Gregor, and J. Enderlein, “Two-focus fluorescence correlation spectroscopy: A new tool for accurate and absolute diffusion measements,” ChemPhysChem8, 433–443 (2007). [CrossRef] [PubMed]
  15. Z. Petrášek, C. Hoege, A. Mashaghi, T. Ohrt, A. A. Hyman, and P. Schwille, “Characterization of protein dynamics in asymmetric cell division by scanning fluorescence correlation spectroscopy,” Biophys. J.95, 5476–5486 (2008). [CrossRef]
  16. Z. Petrášek, C. Hoege, A. A. Hyman, and P. Schwille, “Two-photon fluorescence imaging and correlation analysis applied to protein dynamics in C. elegans embryo,” Proc. SPIE6860, 68601L (2008). [CrossRef]
  17. J. Ries, S. Chiantia, and P. Schwille, “Accurate determination of membrane dynamics with line-scan FCS,” Biophys. J.96, 1999–2008 (2009). [CrossRef] [PubMed]
  18. M. A. Digman, C. M. Brown, P. Sengupta, P. W. Wiseman, A. R. Horwitz, and E. Gratton, “Measuring fast dynamics in solutions and cells with a laser scanning microscope,” Biophys. J.89, 1317–1327 (2005). [CrossRef] [PubMed]
  19. J. P. Skinner, Y. Chen, and J. D. Müller, “Position-sensitive scanning fluorescence correlation spectroscopy,” Biophys. J.89, 1288–1301 (2005). [CrossRef] [PubMed]
  20. Z. Petrášek and P. Schwille, “Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy,” Biophys. J.94, 1437–1448 (2008). [CrossRef]
  21. H. Qian and E. L. Elson, “Analysis of confocal laser-microscope optics for 3-D fluorescence correlation spectroscopy,” Appl. Opt.30, 1185–1195 (1991). [CrossRef] [PubMed]
  22. S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J.83, 2300–2317 (2002). [CrossRef] [PubMed]
  23. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999), chap. 8, pp. 484–492, 7th ed.
  24. K. M. Berland, P. T. C. So, Y. Chen, W. W. Mantulin, and E. Gratton, “Scanning two-photon fluctuation correlation spectroscopy: Particle counting measurements for detection of molecular aggregation,” Biophys. J.71, 410–420 (1996). [CrossRef] [PubMed]
  25. J. Widengren, U. Mets, and R. Rigler, “Fluorescence correlation spectroscopy of triplet states in solution: A theoretical and experimental study,” J. Phys. Chem.99, 13368–13379 (1995). [CrossRef]
  26. S. Chiantia, N. Kahya, and P. Schwille, “Dehydration damage of domain-exhibiting supported bilayers: An AFM study on the protective effects of disaccharides and other stabilizing substances,” Langmuir21, 6317–6323 (2005). [CrossRef] [PubMed]
  27. D. C. Carrer, E. Kummer, G. Chwastek, S. Chiantia, and P. Schwille, “Asymmetry determines the effects of natural ceramides on model membranes,” Soft Matter5, 3279–3286 (2009). [CrossRef]
  28. N. Kahya, “Protein-protein and protein-lipid interactions in domain-assembly: Lessons from giant unilamellar vesicles,” Biochim. Biophys. Acta Biomembr.1798, 1392–1398 (2010). [CrossRef]
  29. K. Bacia, D. Scherfeld, N. Kahya, and P. Schwille, “Fluorescence correlation spectroscopy relates rafts in model and native membranes,” Biophys. J.87, 1034–1043 (2004). [CrossRef] [PubMed]
  30. M. Przybylo, J. Sýkora, J. Humpolíčková, A. Benda, A. Zan, and M. Hof, “Lipid diffusion in giant unilamellar vesicles is more than 2 times faster than in supported phospholipid bilayers under identical conditions,” Langmuir22, 9096–9099 (2006). [CrossRef] [PubMed]
  31. S. Chiantia, J. Ries, N. Kahya, and P. Schwille, “Combined AFM and two-focus SFCS study of raft-exhibiting model membranes,” ChemPhysChem7, 2409–2418 (2006). [CrossRef] [PubMed]
  32. U. Haupts, S. Maiti, P. Schwille, and W. W. Webb, “Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy,” Proc. Natl. Acad. Sci. U. S. A.95, 13573–13578 (1998). [CrossRef] [PubMed]
  33. J. Hendrix, C. Flors, P. Dedecker, J. Hofkens, and Y. Engelborghs, “Dark states in monomeric red fluorescent proteins studied by fluorescence correlation and single molecule spectroscopy,” Biophys. J.94, 4103–4113 (2008). [CrossRef] [PubMed]
  34. J. Widengren and P. Schwille, “Characterization of photoinduced isomerization and back-isomerization of the cyanine dye Cy5 by fluorescence correlation spectroscopy,” J. Phys. Chem. A104, 6416–6428 (2000). [CrossRef]
  35. K. Bacia and P. Schwille, “Practical guidelines for dual-color fluorescence cross-correlation spectroscopy,” Nature Protocols2, 2842–2856 (2007). [CrossRef] [PubMed]
  36. E. P. Petrov and P. Schwille, “Fluorescence correlation spectroscopy on undulating membranes,” Biophys. J.88, 524A–525A (2005).
  37. J. Evans, W. Gratzer, N. Mohandas, K. Parker, and J. Sleep, “Fluctuations of the red blood cell membrane: Relation to mechanical properties and lack of ATP dependence,” Biophys. J.94, 4134–4144 (2008). [CrossRef] [PubMed]
  38. M. B. Schneider, J. T. Jenkins, and W. W. Webb, “Thermal fluctuations of large quasi-spherical bimolecular phospholipid-vesicles,” Journal De Physique45, 1457–1472 (1984). [CrossRef]
  39. Y. Korlann, T. Dertinger, X. Michalet, S. Weiss, and J. Enderlein, “Measuring diffusion with polarization-modulation dual-focus fluorescence correlation spectroscopy,” Opt. Express16, 14609–14616 (2008). [CrossRef] [PubMed]
  40. P. Ferrand, M. Pianta, A. Kress, A. Aillaud, H. Rigneault, and D. Marguet, “A versatile dual spot laser scanning confocal microscopy system for advanced fluorescence correlation spectroscopy analysis in living cell,” Rev. Sci. Instrum.80, 083702 (2009). [CrossRef] [PubMed]
  41. C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature457, 1159–1162 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited