OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25035–25047

Polarization-induced tunability of localized surface plasmon resonances in arrays of sub-wavelength cruciform apertures

Paul G. Thompson, Claudiu G. Biris, Edward J. Osley, Ophir Gaathon, Richard M. Osgood, Jr., Nicolae C. Panoiu, and Paul A. Warburton  »View Author Affiliations


Optics Express, Vol. 19, Issue 25, pp. 25035-25047 (2011)
http://dx.doi.org/10.1364/OE.19.025035


View Full Text Article

Enhanced HTML    Acrobat PDF (2543 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate experimentally that by engineering the structural asymmetry of the primary unit cell of a symmetrically nanopatterned metallic film the optical transmission becomes strongly dependent on the polarization of the incident wave. By considering a specific plasmonic structure consisting of square arrays of nanoscale asymmetric cruciform apertures we show that the enhanced optical anisotropy is induced by the excitation inside the apertures of localized surface plasmon resonances. The measured transmission spectra of these plasmonic arrays show a transmission maximum whose spectral location can be tuned by almost 50% by simply varying the in-plane polarization of the incident photons. Comprehensive numerical simulations further prove that the maximum of the transmission spectra corresponds to polarization-dependent surface plasmon resonances tightly confined in the two arms of the cruciform aperture. Despite this, there are isosbestic points where the transmission, reflection, and absorption spectra are polarization-independent, regardless of the degree of asymmetry of the apertures.

© 2011 OSA

OCIS Codes
(230.0250) Optical devices : Optoelectronics
(250.5403) Optoelectronics : Plasmonics
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optics at Surfaces

History
Original Manuscript: September 12, 2011
Revised Manuscript: November 8, 2011
Manuscript Accepted: November 8, 2011
Published: November 22, 2011

Citation
Paul G. Thompson, Claudiu G. Biris, Edward J. Osley, Ophir Gaathon, Richard M. Osgood, Nicolae C. Panoiu, and Paul A. Warburton, "Polarization-induced tunability of localized surface plasmon resonances in arrays of sub-wavelength cruciform apertures," Opt. Express 19, 25035-25047 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-25-25035


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408, 131–314 (2005). [CrossRef]
  2. F. Garcia-Vidal, L. Martin-Moreno, T. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010). [CrossRef]
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer: New York, 2007).
  4. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288, 243–247 (288).
  5. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag: Berlin, 1995).
  6. J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng.5, 285–292 (2003). [CrossRef] [PubMed]
  7. C. Soennichsen and A. P. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett.5, 301–304 (2005). [CrossRef]
  8. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010). [CrossRef] [PubMed]
  9. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparancy for plasmonic sensing,” Nano Lett.10, 1103–1107 (2010). [CrossRef]
  10. S. M. Nie and S. R. Emery, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275, 1102–1106 (1997). [CrossRef] [PubMed]
  11. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection using Surface-Enhanced Raman Scattering,” Phys. Rev. Lett.78, 1667–1670 (1997). [CrossRef]
  12. C. L. Haynes and R. P. Van Duyne, “Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy,” J. Phys. Chem. B107, 7426–7433 (2003). [CrossRef]
  13. B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature (London)1999, 134–137 (1999). [CrossRef]
  14. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nano-imaging,” Phys. Rev. Lett.92, No. 220801 (2004). [CrossRef] [PubMed]
  15. R. M. Roth, N. C. Panoiu, M. M. Adams, R. M. Osgood, C. C. Neacsu, and M. B. Raschke, “Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips,” Opt. Express14, 2921–2931 (2006). [CrossRef] [PubMed]
  16. P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005). [CrossRef] [PubMed]
  17. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett.94, No. 017402 (2005). [CrossRef] [PubMed]
  18. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7, 28–33 (2007). [CrossRef] [PubMed]
  19. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “Hybridization model for the plasmon response of complex nanostructures,” Science302, 419–422 (2003). [CrossRef] [PubMed]
  20. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater.13, 1501–1505 (2001). [CrossRef]
  21. N. C. Panoiu and R. M. Osgood, “Subwavelength nonlinear plasmonic nanowire,” Nano Lett.4, 2427–2430 (2004). [CrossRef]
  22. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90, No. 107404 (2003). [CrossRef] [PubMed]
  23. W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett.6, 1027–1030 (2006). [CrossRef]
  24. N. Liu, H. Liu, S. N. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photon.3, 157–162 (2009). [CrossRef]
  25. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001). [CrossRef] [PubMed]
  26. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Demonstration of near-infrared negative-index materials,” Phys. Rev. Lett.95, No. 137404 (2005). [CrossRef] [PubMed]
  27. V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett.30, 3356–3358 (2005). [CrossRef]
  28. M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater.21, 4680–4682 (2009). [CrossRef]
  29. S. Zhang, Y. S. Park, J. S. Li, X. C. Lu, W. L. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett.102, No. 023901 (2009). [CrossRef] [PubMed]
  30. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B78, No. 205405 (2008). [CrossRef]
  31. J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, No. 251104 (2010). [CrossRef]
  32. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47, 2075–2084 (1999). [CrossRef]
  33. M. C. K. Wiltshire, J. B. Pendry, W. Williams, and J. V. Hajnal, “Sub-wavelength imaging at radio frequency,” J. Phys.: Condens. Matter18, L315–L321 (2006). [CrossRef]
  34. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104, No. 207403 (2010). [CrossRef] [PubMed]
  35. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B88, No. 045131 (2009).
  36. I. I. Smolyaninov, A. V. Zayats, A. Gungor, and C. C. Davis, “Single-photon tunneling via localized surface plasmons,” Phys. Rev. Lett.88, No. 187402 (2002). [CrossRef] [PubMed]
  37. X. W. Wang, G. C. Schatz, and S. K. Gray, “Ultrafast pulse excitation of a metallic nanosystem containing a Kerr nonlinear material,” Phys. Rev. B74, No. 195439 (2006).
  38. R. M. Roth, N. C. Panoiu, M. M Adams, J. I. Dadap, and R. M. Osgood, “Polarization-tunable plasmon-enhanced extraordinary transmission through metallic films using asymmetric cruciform apertures,” Opt. Lett.32, 3414–3416 (2007). [CrossRef] [PubMed]
  39. R. Qiang, J. Chen, T. Zhao, S. Wang, P. Ruchhoeft, and M. Morgan, “Modeling of infrared bandpass filters using a three-dimensional FDTD method,” Electr. Lett.41, 914–915 (2005). [CrossRef]
  40. C. Imhof and R. Zengerle, “Pairs of metallic crosses as a left-handed metamaterial with improved polarization properties,” Opt. Express14, 8257–8262 (2006). [CrossRef] [PubMed]
  41. L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: Single apertures versus periodic arrays,” Appl. Phys. Lett.95, No. 201116 (2009). [PubMed]
  42. L. Lin and A. Roberts, “Angle-robust resonances in cross-shaped aperture arrays,” Appl. Phys. Lett.97, No. 061109 (2010).
  43. T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B76, No. 033407 (2007). [CrossRef]
  44. C. Rockstuhl, T. Zentgraf, T. P. Meyrath, H. Giessen, and F. Lederer, “Resonances in complementary metamaterials and nanoapertures,” Opt. Express16, 2080–2090 (2008). [CrossRef] [PubMed]
  45. DiffractMOD, RSoft Design Group. http://www.rsoftdesign.com
  46. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared - Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt.24, 4493–4499 (1985). [CrossRef] [PubMed]
  47. H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings (Springer: Berlin, 1988).
  48. J. A. Hutchison, D. M. O’Carroll, T. Schwartz, C. Genet, and T. W. Ebbesen, “Absorption induced transparency,” Angew. Chem. Int. Ed.50, 2085–2089 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited