OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25057–25065

Musical instrument pickup based on a laser locked to an optical fiber resonator

Saverio Avino, Jack A. Barnes, Gianluca Gagliardi, Xijia Gu, David Gutstein, James R. Mester, Costa Nicholaou, and Hans-Peter Loock  »View Author Affiliations


Optics Express, Vol. 19, Issue 25, pp. 25057-25065 (2011)
http://dx.doi.org/10.1364/OE.19.025057


View Full Text Article

Enhanced HTML    Acrobat PDF (1706 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A low-noise transducer based on a fiber Fabry-Perot (FFP) cavity was used as a pickup for an acoustic guitar. A distributed feedback (DFB) laser was locked to a 25 MHz-wide resonance of the FFP cavity using the Pound-Drever-Hall method. The correction signal was used as the audio output and was preamplified and sampled at up to 96 kHz. The pickup system is largely immune against optical noise sources, exhibits a flat frequency response from the infrasound region to about 25 kHz, and has a distortion-free audio output range of about 50 dB.

© 2011 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.7280) Instrumentation, measurement, and metrology : Vibration analysis

ToC Category:
Sensors

History
Original Manuscript: September 13, 2011
Manuscript Accepted: November 10, 2011
Published: November 23, 2011

Citation
Saverio Avino, Jack A. Barnes, Gianluca Gagliardi, Xijia Gu, David Gutstein, James R. Mester, Costa Nicholaou, and Hans-Peter Loock, "Musical instrument pickup based on a laser locked to an optical fiber resonator," Opt. Express 19, 25057-25065 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-25-25057


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol.8(4), 355–375 (1997). [CrossRef]
  2. D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct.12(1), 122–128 (2003). [CrossRef]
  3. A. Cusano, P. Capoluongo, S. Campopiano, A. Cutolo, M. Giordano, F. Felli, A. Paolozzi, and M. Caponero, “Experimental modal analysis of an aircraft model wing by embedded fiber Bragg grating sensors,” IEEE Sens. J.6(1), 67–77 (2006). [CrossRef]
  4. A. Hongo, S. Kojima, and S. Komatsuzaki, “Applications of fiber Bragg grating sensors and high-speed interrogation techniques,” Struct. Contr. Health Monit.12(3-4), 269–282 (2005). [CrossRef]
  5. Q. X. Yang, J. Barnes, H.-P. Loock, and D. Pedersen, “Time-resolved photoacoustic spectroscopy using fiber Bragg grating acoustic transducers,” Opt. Commun.276(1), 97–106 (2007). [CrossRef]
  6. Q. X. Yang, H.-P. Loock, I. Kozin, and D. Pedersen, “Fiber Bragg grating photoacoustic detector for liquid chromatography,” Analyst (Lond.)133(11), 1567–1572 (2008). [CrossRef] [PubMed]
  7. H.-P. Loock, W. S. Hopkins, C. Morris-Blair, R. Resendes, J. Saari, and N. R. Trefiak, “Recording the sound of musical instruments with FBGs: the photonic pickup,” Appl. Opt.48(14), 2735–2741 (2009). [CrossRef] [PubMed]
  8. N. Ballard, D. Paz-Soldan, P. Kung, and H.-P. Loock, “Musical instrument recordings made with a fiber Fabry-Perot cavity: photonic guitar pickup,” Appl. Opt.49(11), 2198–2203 (2010). [CrossRef] [PubMed]
  9. E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys.69(1), 79–87 (2001). [CrossRef]
  10. B. Lissak, A. Arie, and M. Tur, “Highly sensitive dynamic strain measurements by locking lasers to fiber Bragg gratings,” Opt. Lett.23(24), 1930–1932 (1998). [CrossRef] [PubMed]
  11. J. H. Chow, I. C. M. Littler, G. de Vine, D. E. McClelland, and M. B. Gray, “Phase-sensitive interrogation of fiber Bragg grating resonators for sensing applications,” J. Lightwave Technol.23(5), 1881–1889 (2005). [CrossRef]
  12. G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science330(6007), 1081–1084 (2010). [CrossRef] [PubMed]
  13. G. Gagliardi, M. Salza, P. Ferraro, E. Chehura, R. P. Tatam, T. K. Gangopadhyay, N. Ballard, D. Paz-Soldan, J. A. Barnes, H.-P. Loock, T. T. Y. Lam, J. H. Chow, and P. De Natale, “Optical fiber sensing based on reflection laser spectroscopy,” Sensors (Basel Switzerland)10(3), 1823–1845 (2010). [CrossRef]
  14. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser-Interferometer Gravitational-Wave Observatory,” Science256(5055), 325–333 (1992). [CrossRef] [PubMed]
  15. G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, “Interrogation of FBG-based strain sensors by means of laser radio-frequency modulation techniques,” J. Opt. A, Pure Appl. Opt.8(7), S507–S513 (2006). [CrossRef]
  16. J. H. Chow, personal information, 2011.
  17. S. Avino, G. Gagliardi, X. Gu, D. Gutstein, J. Mester, C. Nicholaou, and H.-P. Loock, “Supplementary information,” (2011), http://www.chem.queensu.ca/people/faculty/loock/ .
  18. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited