OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25093–25112

Theory of oblique and grazing incidence Talbot‑Lau interferometers and demonstration in a compact source x‑ray reflective interferometer

Han Wen, Camille K Kemble, and Eric E. Bennett  »View Author Affiliations


Optics Express, Vol. 19, Issue 25, pp. 25093-25112 (2011)
http://dx.doi.org/10.1364/OE.19.025093


View Full Text Article

Enhanced HTML    Acrobat PDF (1336 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

With the advent of Talbot-Lau interferometers for x-ray phase-contrast imaging, oblique and grazing incidence configurations are now used in the pursuit of sub-micron grating periods and high sensitivity. Here we address the question whether interferometers having oblique incident beams behave in the same way as the well-understood normal incidence ones, particularly when the grating planes are non-parallel. We derive the normal incidence equivalence of oblique incidence geometries from wave propagation modeling. Based on the theory, we propose a practical method to correct for non-parallelism of the grating planes, and demonstrate its effectiveness with a polychromatic hard x-ray reflective interferometer.

© 2011 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(340.7450) X-ray optics : X-ray interferometry
(110.3175) Imaging systems : Interferometric imaging

ToC Category:
X-ray Optics

History
Original Manuscript: October 20, 2011
Revised Manuscript: November 11, 2011
Manuscript Accepted: November 12, 2011
Published: November 23, 2011

Citation
Han Wen, Camille K Kemble, and Eric E. Bennett, "Theory of oblique and grazing incidence Talbot‑Lau interferometers and demonstration in a compact source x‑ray reflective interferometer," Opt. Express 19, 25093-25112 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-25-25093


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. W. Keith, C. R. Ekstrom, Q. A. Turchette, and D. E. Pritchard, “An interferometer for atoms,” Phys. Rev. Lett.66(21), 2693–2696 (1991). [CrossRef] [PubMed]
  2. J. F. Clauser and S. F. Li, “Talbot-vonLau atom interferometry with cold slow potassium,” Phys. Rev. A49(4), R2213–R2216 (1994). [CrossRef] [PubMed]
  3. P. Cloetens, J. P. Guigay, C. De Martino, J. Baruchel, and M. Schlenker, “Fractional Talbot imaging of phase gratings with hard x rays,” Opt. Lett.22(14), 1059–1061 (1997). [CrossRef] [PubMed]
  4. C. David, B. Nohammer, H. H. Solak, and E. Ziegler, “Differential x-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett.81(17), 3287–3289 (2002). [CrossRef]
  5. A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of x-ray Talbot interferometry,” Jap. J. Appl. Phys. Part 2-Letters42, 866–868 (2003).
  6. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express13(16), 6296–6304 (2005). [CrossRef] [PubMed]
  7. H. F. Talbot, “LXXVI. Facts relating to optical science. No. IV,” Philos. Mag.9, 401–407 (1836).
  8. E. Lau, “Beugungserscheinung an Dopperlrastern,” Ann. Phys. (Leipzig)6(7-8), 417–427 (1948). [CrossRef]
  9. J. Jahns and A. W. Lohmann, “Lau effect (a diffraction experiment with incoherent illumination),” Opt. Commun.28(3), 263–267 (1979). [CrossRef]
  10. B. J. Chang, R. Alferness, and E. N. Leith, “Space-invariant achromatic grating interferometers: theory,” Appl. Opt.14(7), 1592–1600 (1975). [CrossRef] [PubMed]
  11. S. K. Lynch, C. Liu, L. Assoufid, N. Y. Morgan, D. Mazilu, E. E. Bennett, C. K. Kemble, X. Xiao, and H. H. Wen, “Multi-layer coated micro-grating array for x-ray phase-contrast imaging,” Proc. SPIE8076, 80760F.1-80760F.10 (2011).
  12. J. Thibaud, “Soft x-ray emission and absorption spectra with tangential grating,” Nature121(3044), 321–322 (1928). [CrossRef]
  13. L. A. Sayce and A. Franks, “N.P.L. gratings for x-ray spectroscopy,” Proc. R. Soc. London Ser. A Math. Phys. Sci.282(1390), 353–357 (1964). [CrossRef]
  14. J. Filevich, K. Kanizay, M. C. Marconi, J. L. A. Chilla, and J. J. Rocca, “Dense plasma diagnostics with an amplitude-division soft-x-ray laser interferometer based on diffraction gratings,” Opt. Lett.25(5), 356–358 (2000). [CrossRef] [PubMed]
  15. Y. Liu, X. Tan, Z. K. Liu, X. D. Xu, Y. L. Hong, and S. J. Fu, “Soft x-ray holographic grating beam splitter including a double frequency grating for interferometer pre-alignment,” Opt. Express16(19), 14761–14770 (2008). [CrossRef] [PubMed]
  16. D. Stutman, M. Finkenthal, and N. Moldovan, “Development of microperiodic mirrors for hard x-ray phase-contrast imaging,” Appl. Opt.49(25), 4677–4686 (2010). [CrossRef] [PubMed]
  17. C. K. Kemble, J. Auxier, S. K. Lynch, E. E. Bennett, N. Y. Morgan, and H. Wen, “Grazing angle Mach-Zehnder interferometer using reflective phase gratings and a polychromatic, un-collimated light source,” Opt. Express18(26), 27481–27492 (2010). [CrossRef] [PubMed]
  18. J. D. Jackson, “Scalar diffraction theory” in Classical Electrodynamics (Wiley, New York 1998), pp. 478–481.
  19. T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys.106(5), 054703 (2009). [CrossRef]
  20. D. L. Voronov, M. Ahn, E. H. Anderson, R. Cambie, C. H. Chang, E. M. Gullikson, R. K. Heilmann, F. Salmassi, M. L. Schattenburg, T. Warwick, V. V. Yashchuk, L. Zipp, and H. A. Padmore, “High-efficiency 5000 lines/mm multilayer-coated blazed grating for extreme ultraviolet wavelengths,” Opt. Lett.35(15), 2615–2617 (2010). [CrossRef] [PubMed]
  21. J. Rizzi, T. Weitkamp, N. Guérineau, M. Idir, P. Mercère, G. Druart, G. Vincent, P. da Silva, and J. Primot, “Quadriwave lateral shearing interferometry in an achromatic and continuously self-imaging regime for future x-ray phase imaging,” Opt. Lett.36(8), 1398–1400 (2011). [CrossRef] [PubMed]
  22. M. Testorf, J. Jahns, N. A. Khilo, and A. M. Goncharenko, “Talbot effect for oblique angle of light propagation,” Opt. Commun.129(3-4), 167–172 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited