OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25143–25150

Cylindrical vector beams for rapid polarization-dependent measurements in atomic systems

F. K. Fatemi  »View Author Affiliations


Optics Express, Vol. 19, Issue 25, pp. 25143-25150 (2011)
http://dx.doi.org/10.1364/OE.19.025143


View Full Text Article

Enhanced HTML    Acrobat PDF (1064 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the use of cylindrical vector beams – beams with spatially varying polarization – for detecting and preparing the spin of a warm rubidium vapor in a spatially dependent manner. We show that a modified probe vector beam can serve as an atomic spin analyzer for an optically pumped medium, which spatially modulates absorption of the beam. We also demonstrate space-variant atomic spin by optical pumping with the vector beams. The beams are thus beneficial for making single-shot polarization-dependent measurements, as well as for providing a means of preparing samples with position-dependent spin.

© 2011 OSA

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(260.5430) Physical optics : Polarization

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: September 28, 2011
Revised Manuscript: November 7, 2011
Manuscript Accepted: November 10, 2011
Published: November 23, 2011

Citation
F. K. Fatemi, "Cylindrical vector beams for rapid polarization-dependent measurements in atomic systems," Opt. Express 19, 25143-25150 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-25-25143


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon.1(1), 1–57 (2009). [CrossRef]
  2. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003). [CrossRef] [PubMed]
  3. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001). [CrossRef] [PubMed]
  4. Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express10(7), 324–331 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-7-324 . [PubMed]
  5. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express7(2), 77–87 (2000), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-7-2-77 . [CrossRef] [PubMed]
  6. D. P. Biss and T. G. Brown, “Cylindrical vector beam focusing through a dielectric interface,” Opt. Express9(10), 490–497 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-10-490 . [CrossRef] [PubMed]
  7. K. J. Moh, X.-C. Yuan, J. Bu, R. E. Burge, and B. Z. Gao, “Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams,” Appl. Opt.46(30), 7544–7551 (2007), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-30-7544 . [CrossRef] [PubMed]
  8. G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre-Gaussian beams,” Opt. Commun.237(1-3), 89–95 (2004). [CrossRef]
  9. T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal, or hybrid polarizations,” Opt. Commun.252(1-3), 12–21 (2005). [CrossRef]
  10. N. Passilly, R. de Saint Denis, K. Aït-Ameur, F. Treussart, R. Hierle, and J.-F. Roch, “Simple interferometric technique for generation of a radially polarized light beam,” J. Opt. Soc. Am. A22(5), 984–991 (2005). [CrossRef] [PubMed]
  11. Y. Kozawa and S. Sato, “Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams,” Opt. Express18(10), 10828–10833 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-10-10828 . [CrossRef] [PubMed]
  12. F. K. Fatemi, M. Bashkansky, E. Oh, and D. Park, “Efficient excitation of the TE(01) hollow metal waveguide mode for atom guiding,” Opt. Express18(1), 323–332 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-1-323 . [CrossRef] [PubMed]
  13. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D32(13), 1455–1461 (1999). [CrossRef]
  14. C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B74, S83–S88 (2002). [CrossRef]
  15. L. J. Wong and F. X. Kärtner, “Direct acceleration of an electron in infinite vacuum by a pulsed radially-polarized laser beam,” Opt. Express18(24), 25035–25051 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-24-25035 . [CrossRef] [PubMed]
  16. S. Tripathi and K. C. Toussaint., “Rapid Mueller matrix polarimetry based on parallelized polarization state generation and detection,” Opt. Express17(24), 21396–21407 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-21396 . [CrossRef] [PubMed]
  17. G. M. Lerman, A. Yanai, N. Ben-Yosef, and U. Levy, “Demonstration of an elliptical plasmonic lens illuminated with radially-like polarized field,” Opt. Express18(10), 10871–10877 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-10-10871 . [CrossRef] [PubMed]
  18. C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett.106(6), 060502 (2011). [CrossRef] [PubMed]
  19. A. V. Failla, S. Jäger, T. Züchner, M. Steiner, and A. J. Meixner, “Topology measurements of metal nanoparticles with 1 nm accuracy by Confocal Interference Scattering Microscopy,” Opt. Express15(14), 8532–8542 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-14-8532 . [CrossRef] [PubMed]
  20. L. Zhao, T. Wang, and S. F. Yelin, “Two-dimensional all-optical spatial light modulation with high speed in coherent media,” Opt. Lett.34(13), 1930–1932 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-13-1930 . [CrossRef] [PubMed]
  21. V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science321(5888), 544–547 (2008). [CrossRef] [PubMed]
  22. M. Bashkansky, D. Park, and F. K. Fatemi, “Azimuthally and radially polarized light with a nematic SLM,” Opt. Express18(1), 212–217 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-1-212 . [CrossRef] [PubMed]
  23. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43, 1783–1809 (1964).
  24. See, for instance, B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (Wiley & Sons, Inc., 1991), Chap. 8.
  25. S. E. Harris, “Electromagnetically-induced transparency,” Phys. Today50(7), 36–42 (1997). [CrossRef]
  26. E. Arimondo, “Relaxation processes in coherent-population trapping,” Phys. Rev. A54(3), 2216–2223 (1996). [CrossRef] [PubMed]
  27. M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett.100(22), 223601 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (217 KB)      QuickTime
» Media 2: AVI (156 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited