## Quantum random bit generation using stimulated Raman scattering |

Optics Express, Vol. 19, Issue 25, pp. 25173-25180 (2011)

http://dx.doi.org/10.1364/OE.19.025173

Enhanced HTML Acrobat PDF (824 KB)

### Abstract

Random number sequences are a critical resource in a wide variety of information systems, including applications in cryptography, simulation, and data sampling. We introduce a quantum random number generator based on the phase measurement of Stokes light generated by amplification of zero-point vacuum fluctuations using stimulated Raman scattering. This is an example of quantum noise amplification using the most noise-free process possible: near unitary quantum evolution. The use of phase offers robustness to classical pump noise and the ability to generate multiple bits per measurement. The Stokes light is generated with high intensity and as a result, fast detectors with high signal-to-noise ratios can be used for measurement, eliminating the need for single-photon sensitive devices. The demonstrated implementation uses optical phonons in bulk diamond.

© 2011 OSA

**OCIS Codes**

(030.6600) Coherence and statistical optics : Statistical optics

(190.5650) Nonlinear optics : Raman effect

(190.5890) Nonlinear optics : Scattering, stimulated

(270.2500) Quantum optics : Fluctuations, relaxations, and noise

(290.5910) Scattering : Scattering, stimulated Raman

(350.5030) Other areas of optics : Phase

**ToC Category:**

Nonlinear Optics

**History**

Original Manuscript: September 26, 2011

Revised Manuscript: October 7, 2011

Manuscript Accepted: October 21, 2011

Published: November 23, 2011

**Citation**

Philip J. Bustard, Doug Moffatt, Rune Lausten, Guorong Wu, Ian A. Walmsley, and Benjamin J. Sussman, "Quantum random bit generation using stimulated Raman scattering," Opt. Express **19**, 25173-25180 (2011)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-25-25173

Sort: Year | Journal | Reset

### References

- G. Marsaglia, “On the randomness of pi and other decimal expansions,” InterStat 5 (2005).
- Y. Shen, L. Tian, and H. Zou, “Practical quantum random number generator based on measuring the shot noise of vacuum states,” Phys. Rev. A 81, 063814 (2010). [CrossRef]
- H. Schmidt, “Quantum mechanical random number generator,” J. Appl. Phys. 41, 462–468 (1970). [CrossRef]
- B. Qi, Y.-M. Chi, H.-K. Lo, and L. Qian, “High-speed quantum random number generation by measuring phase noise of a single-mode laser,” Opt. Lett. 35, 312–314 (2010). [CrossRef] [PubMed]
- H. Guo, W. Tang, Y. Liu, and W. Wei, “Truly random number generation based on measurement of phase noise of a laser,” Phys. Rev. E 81, 051137 (2010). [CrossRef]
- W. Wei and H. Guo, “Bias-free true random-number generator,” Opt. Lett. 34, 1876–1878 (2009). [CrossRef] [PubMed]
- M. Ren, E. Wu, Y. Liang, Y. Jian, G. Wu, and H. Zeng, “Quantum random-number generator based on a photon-number-resolving detector,” Phys. Rev. A 83, 023820 (2011). [CrossRef]
- M. Wahl, M. Leifgen, M. Berlin, T. Röhlicke, H.-J. Rahn, and O. Benson, “An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements,” Appl. Phys. Lett. 98, 171105 (2011). [CrossRef]
- J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, postprocessing free, quantum random number generator,” Appl. Phys. Lett. 93, 031109 (2008). [CrossRef]
- S. Pironio, A. Acín, S. Massar, A. Boyer de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010). [CrossRef] [PubMed]
- U. Maurer, “Secret key agreement by public discussion from common information,” IEEE Trans. Inf. Theory 39, 733 –742 (1993). [CrossRef]
- A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55 (1979). [CrossRef]
- M. G. Raymer and I. A. Walmsley, “Quantum coherence properties of stimulated Raman scattering,” Prog. Opt. 28, 181 (1990). [CrossRef]
- M. G. Raymer, K. Rza̦żewski, and J. Mostowski, “Pulse-energy statistics in stimulated Raman scattering,” Opt. Lett. 7, 71–73 (1982). [CrossRef] [PubMed]
- I. A. Walmsley and M. G. Raymer, “Observation of macroscopic quantum fluctuations in stimulated Raman scattering,” Phys. Rev. Lett. 50, 962–965 (1983). [CrossRef]
- S. J. Kuo, D. T. Smithey, and M. G. Raymer, “Spatial interference of macroscopic light fields from independent Raman sources,” Phys. Rev. A 43, 4083–4086 (1991). [CrossRef] [PubMed]
- D. T. Smithey, M. Belsley, K. Wedding, and M. G. Raymer, “Near quantum-limited phase memory in a Raman amplifier,” Phys. Rev. Lett. 67, 2446–2449 (1991). [CrossRef] [PubMed]
- M. Belsley, D. T. Smithey, K. Wedding, and M. G. Raymer, “Observation of extreme sensitivity to induced molecular coherence in stimulated Raman scattering,” Phys. Rev. A 48, 1514 (1993). [CrossRef] [PubMed]
- J. Reintjes and M. Bashkansky, Handbook of Optics, Volume IV: Optical Properties of Materials, Nonlinear Optics, Quantum Optics, 3rd ed. (McGraw-Hill Professional, 2010), chap. 15, p. 15.1.
- K. C. Lee, B. J. Sussman, J. Nunn, V. O. Lorenz, K. Reim, D. Jaksch, I. A. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diam. Relat. Mater. 19, 1289 – 1295 (2010). [CrossRef]
- M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 1980–1993 (1981). [CrossRef]
- J. von Neumann, “Various techniques used in connection with random digits,” Nat. Bur. Stand., Appl. Math Ser. 12, 36–38 (1951).
- A. Juels, M. Jakobsson, E. Shriver, and B. Hillyer, “How to turn loaded dice into fair coins,” IEEE Trans. Inf. Theory 46, 911 –921 (2000). [CrossRef]
- C. Gerry and P. Knight, Introductory Quantum Optics (Cambridge Univ Pr, 2005).
- G. Marsaglia, “Diehard battery of tests of randomness,” http://www.stat.fsu.edu/pub/diehard/ .
- H. Haken, Encyclopedia of Physics, vol. 25 (Springer, 1970).
- W. Louisell, Quantum Statistical Properties of Radiation (John Wiley and Sons, Inc., New York, 1973).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.