OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25206–25221

Evolution of modes in a metal-coated nano-fiber

Junfeng Song, Remo Proietti Zaccaria, Guancai Dong, Enzo Di Fabrizio, M. B. Yu, and G. Q. Lo  »View Author Affiliations

Optics Express, Vol. 19, Issue 25, pp. 25206-25221 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (3100 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the evolution of modes in cylindrical metal/dielectric systems. The transition between surface plasmon polaritons and localized modes is documented in terms of the real and imaginary parts of the effective refractive index as a function of geometric and optical parameters. We show the evolution process of SPP and localized modes. New phenomena of coupling between SPP and core-like modes, and of mode gap and super-long surface plasmon polaritons are found and discussed. We conclude that both superluminal light and slow light can be solutions of metallically coated dielectric fibers.

© 2011 OSA

OCIS Codes
(060.2400) Fiber optics and optical communications : Fiber properties
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 18, 2011
Revised Manuscript: October 22, 2011
Manuscript Accepted: October 25, 2011
Published: November 23, 2011

Junfeng Song, Remo Proietti Zaccaria, Guancai Dong, Enzo Di Fabrizio, M. B. Yu, and G. Q. Lo, "Evolution of modes in a metal-coated nano-fiber," Opt. Express 19, 25206-25221 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Peng, X. Wang, and K. Kempa, “TEM-like optical mode of a coaxial nanowaveguide,” Opt. Express16(3), 1758–1763 (2008). [CrossRef] [PubMed]
  2. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett.22(7), 475–477 (1997). [CrossRef] [PubMed]
  3. A. S. Lapchuk, D. Shin, H. S. Jeong, C. S. Kyong, and D. I. Shin, “Mode propagation in optical nanowaveguides with dielectric cores and surrounding metal layers,” Appl. Opt.44(35), 7522–7531 (2005). [CrossRef] [PubMed]
  4. U. Schröter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B64(12), 125420 (2001). [CrossRef]
  5. U. Langbein, U. Trutschel, A. Unger, and M. Duguay, “Rigorous mode solver for multilayer cylindrical waveguide structures using constraints optimization,” Opt. Quantum Electron.41(4), 223–233 (2009). [CrossRef]
  6. Y. Saito and P. Verma, “Imaging and spectroscopy through plasmonic nano-probe,” Eur. Phys. J. Appl. Phys.46(2), 20101 (2009). [CrossRef]
  7. F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett.8(8), 2321–2327 (2008). [CrossRef] [PubMed]
  8. A. K. Sharma and B. D. Gupta, “Comparison of performance parameters of conventional and nano-plasmonic fiber optic sensors,” Plasmonics2(2), 51–54 (2007). [CrossRef]
  9. F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010). [CrossRef] [PubMed]
  10. A. Shinya, S. Mitsugi, E. Kuramochi, and M. Notomi, “Ultrasmall multi-channel resonant-tunneling filter using mode gap of width-tuned photonic-crystal waveguide,” Opt. Express13(11), 4202–4209 (2005). [CrossRef] [PubMed]
  11. H. Zhao, R. P. Zaccaria, P. Verma, J. F. Song, and H. B. Sun, “Validity of the V parameter for photonic quasi-crystal fibers,” Opt. Lett.35(7), 1064–1066 (2010). [CrossRef] [PubMed]
  12. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am.68(9), 1196–1201 (1978). [CrossRef]
  13. G. Ouyang, Y. Xu, and A. Yariv, “Theoretical study on dispersion compensation in air-core Bragg fibers,” Opt. Express10(17), 899–908 (2002). [PubMed]
  14. T. Ito and K. Sakoda, “Photonic bands of metallic systems. II. Features of surface plasmon polaritons,” Phys. Rev. B64(4), 045117(2001). [CrossRef]
  15. I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B62(23), 15299–15302 (2000). [CrossRef]
  16. L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics50(5), 4094–4106 (1994). [CrossRef] [PubMed]
  17. J. A. Buck, Fundamentals of Optical Fibers (Wiley-Interscience, 2004).
  18. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am.55(10), 1205–1209 (1965). [CrossRef]
  19. R. Adato and J. Guo, “Characteristics of ultra-long range surface plasmon waves at optical frequencies,” Opt. Express15(8), 5008–5017 (2007). [CrossRef] [PubMed]
  20. X. L. Zhang, J. F. Song, G. Q. Lo, and D. L. Kwong, “The observation of super-long range surface plasmon polaritons modes and its application as sensory devices,” Opt. Express18(21), 22462–22470 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (678 KB)     
» Media 2: MOV (798 KB)     
» Media 3: MOV (548 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited