OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25222–25229

Optically-programmable nonlinear photonic component for dielectric-loaded plasmonic circuitry

Alexey V. Krasavin, Sukanya Randhawa, Jean-Sebastien Bouillard, Jan Renger, Romain Quidant, and Anatoly V. Zayats  »View Author Affiliations


Optics Express, Vol. 19, Issue 25, pp. 25222-25229 (2011)
http://dx.doi.org/10.1364/OE.19.025222


View Full Text Article

Enhanced HTML    Acrobat PDF (2420 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate both experimentally and numerically a compact and efficient, optically tuneable plasmonic component utilizing a surface plasmon polariton ring resonator with nonlinearity based on trans-cis isomerization in a polymer material. We observe more than 3-fold change between high and low transmission states of the device at milliwatt control powers (∼100 W/cm2 by intensity), with the performance limited by switching speed of the material. Such plasmonic components can be employed in optically programmable and reconfigurable integrated photonic circuitry.

© 2011 OSA

OCIS Codes
(130.1750) Integrated optics : Components
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Integrated Optics

History
Original Manuscript: August 16, 2011
Revised Manuscript: November 1, 2011
Manuscript Accepted: November 11, 2011
Published: November 23, 2011

Citation
Alexey V. Krasavin, Sukanya Randhawa, Jean-Sebastien Bouillard, Jan Renger, Romain Quidant, and Anatoly V. Zayats, "Optically-programmable nonlinear photonic component for dielectric-loaded plasmonic circuitry," Opt. Express 19, 25222-25229 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-25-25222


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. I. Bozhevolnyi, Plasmonic Nanowaveguides and Cirquits (Pan Stanford Publishing, 2009).
  2. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics1, 402–406 (2008). [CrossRef]
  3. G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol.6, 107–111 (2011). [CrossRef] [PubMed]
  4. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3, 55–58 (2009). [CrossRef]
  5. R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett.8, 1506–1510 (2008). [CrossRef] [PubMed]
  6. P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett.91, 043101 (2007). [CrossRef]
  7. J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express18, 1207–1216 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-1207 . [CrossRef] [PubMed]
  8. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend-and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express16, 13585–13592 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-18-13585 . [CrossRef] [PubMed]
  9. B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers,” Appl. Phys. Lett.91, 081111 (2007). [CrossRef]
  10. A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B78, 045425 (2008). [CrossRef]
  11. O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.106, 093109 (2009). [CrossRef]
  12. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett.94, 051111 (2009). [CrossRef]
  13. S. Randhawa, A. V. Krasavin, T. Holmgaard, J. Renger, S. I. Bozhevolnyi, A. V. Zayats, and R. Quidant, “Experimental demonstration of dielectric-loaded plasmonic waveguide disk resonators at telecom wavelengths,” Appl. Phys. Lett.98, 161102 (2011). [CrossRef]
  14. A. V. Krasavin and A. V. Zayats, “Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett.97, 041107 (2010). [CrossRef]
  15. A. V. Krasavin and A. V. Zayats, “All-optical active components for dielectric-loaded plasmonic waveguides,” Opt. Commun.283, 1581–1584 (2010). [CrossRef]
  16. N. C. R. Holme, P. S. Ramanujam, and S. Hvilsted, “10,000 optical write, read, and erase cycles in an azobenzene sidechain liquid-crystalline polyester,” Opt. Lett.21, 902–904 (1996). [CrossRef] [PubMed]
  17. D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett.66, 1166–1168 (1995). [CrossRef]
  18. D. G. Zhang, X.-C. Yuan, A. Bouhelier, G. H. Yuan, P. Wang, and H. Ming, “Active control of surface plasmon polaritons by optical isomerization of an azobenzene polymer film,” Appl. Phys. Lett.95, 101102 (2009). [CrossRef]
  19. K. G. Yager and C. J. Barrett, “Novel photo-switching using azobenzene functional materials,” J. Photochem. Photobiol. A182, 250–261 (2006). [CrossRef]
  20. R. Loucif-Saibi, K. Nakatani, and J. A. Delaire, “Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methy1 methacrylate) films,” Chem. Mater.5, 229–236 (1993). [CrossRef]
  21. Z. Sekkat, D. Morichre, M. Dumont, R. Loucif-Saibi, and J. A. Delaire, “Photoisomerization of azobenzene derivatives in polymeric thin films,” J. Appl. Phys71, 1543–1545 (1992). [CrossRef]
  22. F. S.-S. Chien, C. Y. Lin, and C. C. Hsu, “Local photo-assisted poling of azo copolymer films by scanning probe microscopy,” J. Phys. D: Appl. Phys.41, 235502 (2008). [CrossRef]
  23. M. Dumont and Z. Sekatt “Dynamical study of photoinduced anisotropy and orientational relazation of azo dyes in polymeric films. Poling at room temperature,” Proc. SPIE1774, 188–199 (1992). [CrossRef]
  24. I. K. Lednev, T.-Q. Ye, R. E. Hester, and J. N. Moore, “Femtosecond time-resolved uv-visible absorption spectroscopy of trans-azobenzene in solution,” J. Phys. Chem.100, 13338–13341 (1996). [CrossRef]
  25. R. Rangel-Rojo, S. Yamada, H. Matsuda, and D. Yankelevich, “Large near-resonance third-order nonlinearity in an azobenzene-functionalized polymer film,” Appl. Phys. Lett.72, 1021–1023 (1998). [CrossRef]
  26. C. B. Ma, D. Xu, Q. Ren, Z. H. Lv, H. L. Yang, F. Q. Meng, G. H. Zhang, S. Y. Guo, L. X. Sang, and Z. G. Wang, “Simple transmission technique for measuring the electro-optic coefficients of poled polymer films,” J. Mater. Sci. Lett.22, 49–51 (2003). [CrossRef]
  27. J.-S. Bouillard, S. Vilain, W. Dickson, and A. V. Zayats, “Hyperspectral imaging with scanning near-field optical microscopy: applications in plasmonics,” Opt. Express18, 16513–16519 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-16513 . [CrossRef] [PubMed]
  28. T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B78, 165431 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited