OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25230–25241

Light trapping with plasmonic particles: beyond the dipole model

Fiona J. Beck, Sudha Mokkapati, and Kylie R. Catchpole  »View Author Affiliations

Optics Express, Vol. 19, Issue 25, pp. 25230-25241 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1670 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Disk-shaped metal nanoparticles on high-index substrates can support resonant surface plasmon polariton (SPP) modes at the interface between the particle and the substrate. We demonstrate that this new conceptual model of nanoparticle scattering allows clear predictive abilities, beyond the dipole model. As would be expected from the nature of the mode, the SPP resonance is very sensitive to the area in contact with the substrate, and insensitive to particle height. We can employ this new understanding to minimise mode out-coupling and Ohmic losses in the particles. Taking into account optical losses due to parasitic absorption and outcoupling of scattered light, we estimate that an optimal array of nanoparticles on a 2 μm Si substrate can provide up to 71% of the enhancement in absorption achievable with an ideal Lambertian rear-reflector. This result compares to an estimate of 67% for conventional pyramid-type light trapping schemes.

© 2011 OSA

OCIS Codes
(350.6050) Other areas of optics : Solar energy
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: August 19, 2011
Revised Manuscript: September 19, 2011
Manuscript Accepted: September 20, 2011
Published: November 23, 2011

Fiona J. Beck, Sudha Mokkapati, and Kylie R. Catchpole, "Light trapping with plasmonic particles: beyond the dipole model," Opt. Express 19, 25230-25241 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  2. F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles,” Prog. Photovolt. Res. Appl. 18(7), 500–504 (2010). [CrossRef]
  3. Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010). [CrossRef]
  4. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007). [CrossRef]
  5. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006). [CrossRef]
  6. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhancement light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008). [CrossRef]
  7. D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett. 93(9), 91103–91107 (2008). [CrossRef]
  8. Y. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17(12), 10195–10205 (2009). [CrossRef] [PubMed]
  9. B. J. Soller and D. G. Hall, “Scattering enhancement from an array of interacting dipoles near a planar waveguide,” J. Opt. Soc. Am. B 19(10), 2437–2448 (2002). [CrossRef]
  10. K. R. Catchpole and S. Pillai, “Absorption enhancement due to scattering by dipoles into silicon waveguides,” J. Appl. Phys. 100(4), 44504 (2006). [CrossRef]
  11. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008). [CrossRef] [PubMed]
  12. J. C. Mertz, “Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description,” J. Opt. Soc. Am. B 17(11), 1906 (2000). [CrossRef]
  13. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008). [CrossRef]
  14. F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 33113 (2010). [CrossRef]
  15. C. Hägglund, M. Zäch, P. Goran, and K. Bengt, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 53110 (2008). [CrossRef]
  16. S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer layer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011). [CrossRef]
  17. F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19(S2), A146–A156 (2011). [CrossRef] [PubMed]
  18. T. L. Temple, H. S. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localised surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009). [CrossRef]
  19. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  20. M. J. Keevers and M. A. Green, “Absorption edge of silicon from solar cell spectral response measurements,” Appl. Phys. Lett. 66(2), 174–176 (1995). [CrossRef]
  21. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007). [CrossRef]
  22. P. Spinelli, C. van Lare, E. Verhagen, and A. Polman, “Controlling Fano lineshapes in plasmon-mediated light coupling into a substrate,” Opt. Express 19(S3Suppl 3), A303–A311 (2011). [CrossRef] [PubMed]
  23. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003). [CrossRef] [PubMed]
  24. I. Diukman and M. Orenstein, “How front side plasmonic nanostructures enhance solar cell efficiency,” Sol. Energy Mater. Sol. Cells 95(9), 2628–2631 (2011). [CrossRef]
  25. F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009). [CrossRef]
  26. A. Centeno, J. Breeze, B. Ahmed, H. Reehal, and N. Alford, “Scattering of light into silicon by spherical and hemispherical silver nanoparticles,” Opt. Lett. 35(1), 76–78 (2010). [CrossRef] [PubMed]
  27. C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F. J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18(S3), A335–A341 (2010). [CrossRef] [PubMed]
  28. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles. (Wiley, New York: 1983).
  29. A. Goetzberger, “Optical confinement in thin Si solar cells by diffuse back reflections,” in 15th Photovoltaic Specialists Conference, (1981).
  30. M. A. Green, “Lambertian light trapping in textured solar cells and light emitting diodes: analytical solutions,” Prog. Photovolt. Res. Appl. 10(4), 235–241 (2002). [CrossRef]
  31. S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys. 44(18), 185101 (2011). [CrossRef]
  32. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1998).
  33. T. Trupke, E. Daub, and P. Würfel, “Absorptivity of silicon solar cells obtained from luminescence,” Sol. Energy Mater. Sol. Cells 53(1-2), 103–114 (1998). [CrossRef]
  34. P. Wurfel, Physik der Solarzellen. Spektrum (Akademischer Verlag GmbH, Heidelberg, Berlin, Oxford, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited