OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25255–25262

Bound exciton photoluminescence from ion‑implanted phosphorus in thin silicon layers

Hisashi Sumikura, Katsuhiko Nishiguchi, Yukinori Ono, Akira Fujiwara, and Masaya Notomi  »View Author Affiliations

Optics Express, Vol. 19, Issue 25, pp. 25255-25262 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (862 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the observation of clear bound exciton (BE) emission from ion-implanted phosphorus. Shallow implantation and high-temperature annealing successfully introduce active donors into thin silicon layers. The BE emission at a wavelength of 1079 nm shows that a part of the implanted donors are definitely activated and isolated from each other. However, photoluminescence and electron spin resonance studies find a cluster state of the activated donors. The BE emission is suppressed by this cluster state rather than the nonradiative processes caused by ion implantation. Our results provide important information about ion implantation for doping quantum devices with phosphorus quantum bits.

© 2011 OSA

OCIS Codes
(300.6470) Spectroscopy : Spectroscopy, semiconductors
(310.6860) Thin films : Thin films, optical properties

ToC Category:

Original Manuscript: August 22, 2011
Revised Manuscript: September 26, 2011
Manuscript Accepted: September 30, 2011
Published: November 23, 2011

Hisashi Sumikura, Katsuhiko Nishiguchi, Yukinori Ono, Akira Fujiwara, and Masaya Notomi, "Bound exciton photoluminescence from ion‑implanted phosphorus in thin silicon layers," Opt. Express 19, 25255-25262 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. L. Morton, A. M. Tyryshkin, R. M. Brown, S. Shankar, B. W. Lovett, A. Ardavan, T. Schenkel, E. E. Haller, J. W. Ager, S. A. Lyon, E. E. Haller, J. W. Ager, and S. A. Lyon, “Solid-state quantum memory using 31P nuclear spin,” Nature455(7216), 1085–1088 (2008).
  2. A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y. Tan, H. Huebl, M. Möttönen, C. D. Nugroho, C. Yang, J. A. van Donkelaar, A. D. C. Alves, D. N. Jamieson, C. C. Escott, L. C. L. Hollenberg, R. G. Clark, and A. S. Dzurak, “Single-shot readout of an electron spin in silicon,” Nature467(7316), 687–691 (2010). [CrossRef] [PubMed]
  3. D. R. McCamey, J. Van Tol, G. W. Morley, and C. Boehme, “Electronic spin storage in an electrically readable nuclear spin memory with a lifetime > 100 seconds,” Science330(6011), 1652–1656 (2010). [CrossRef] [PubMed]
  4. A. M. Tyryshkin, S. A. Lyon, A. V. Astashkin, and A. M. Raitsimring, “Electron spin relaxation times of phosphorus donors in silicon,” Phys. Rev. B68(19), 193207 (2003). [CrossRef]
  5. T. D. Ladd, P. van Look, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light,” New J. Phys.8(9), 184 (2006). [CrossRef]
  6. G. Feher, “Electron spin resonance experiments on donors in silicon. I. Electronic structure of donors by the electron nuclear double resonance technique,” Phys. Rev.114(5), 1219–1244 (1959). [CrossRef]
  7. A. Yang, M. Steger, D. Karaiskaj, M. L. W. Thewalt, M. Cardona, K. M. Itoh, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.-J. Pohl, J. W. Ager, and E. E. Haller, “Optical detection and ionization of donors in specific electronic and nuclear spin States,” Phys. Rev. Lett.97(22), 227401 (2006). [CrossRef] [PubMed]
  8. A. Yang, M. Steger, T. Sekiguchi, M. L. W. Thewalt, J. W. Ager, and E. E. Haller, “Homogeneous linewidth of the 31P bound exciton transition in silicon,” Appl. Phys. Lett.95(12), 122113 (2009). [CrossRef]
  9. P. J. Dean, J. R. Haynes, and W. F. Flood, “New radiative recombination processes involving neutral donors and acceptors in silicon and germanium,” Phys. Rev.161(3), 711–729 (1967). [CrossRef]
  10. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  11. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett.88(4), 041112 (2006). [CrossRef]
  12. T. Shinada, S. Okamoto, T. Kobayashi, and I. Ohdomari, “Enhancing semiconductor device performance using ordered dopant arrays,” Nature437(7062), 1128–1131 (2005). [CrossRef] [PubMed]
  13. A. Othonos and C. Christofides, “Ultrafast dynamics in phosphorus-implanted silicon wafers: The effects of annealing,” Phys. Rev. B66(8), 085206 (2002). [CrossRef]
  14. J. Wagner, J. C. Gelpey, and R. T. Hodgson, “Photoluminescence from rapid thermal annealed and pulsed-laser-annealed ion-implanted Si,” Appl. Phys. Lett.45(1), 47 (1984). [CrossRef]
  15. R. E. Harding, G. Davies, S. Hayama, P. G. Coleman, C. P. Burrows, and J. Wong-Leung, “Photoluminescence response of ion-implanted silicon,” Appl. Phys. Lett.89(18), 181917 (2006). [CrossRef]
  16. O. F. Swenson, T. E. Luke, and R. L. Hengehold, “Luminescence study of thallium implanted silicon,” J. Appl. Phys.54(11), 6329 (1983). [CrossRef]
  17. K. Terashima and T. Matsuda, “Luminescence centers in indium-implanted silicon,” Jpn. J. Appl. Phys.41(Part 1, No. 3A), 1203–1208 (2002). [CrossRef]
  18. D. Karaiskaj, M. L. W. Thewalt, T. Ruf, M. Cardona, and M. Konuma, “Intrinsic acceptor ground state splitting in silicon: an isotopic effect,” Phys. Rev. Lett.89(1), 016401 (2002). [CrossRef] [PubMed]
  19. M. Mizuta, N. H. Sheng, and J. L. Merz, “Luminescence investigations of laser-annealed Si,” Appl. Phys. Lett.38(6), 453 (1981). [CrossRef]
  20. J. F. Gibbsons, W. S. Johnson, and S. W. Mylroie, Projected Range Statistics, Semiconductors and Related Material, 2nd ed. (Dowden, Hutchinson & Loss, Stroudsburg, PA, 1975).
  21. M. Tamura, “Secondary defects in phosphorus-implanted silicon,” Appl. Phys. Lett.23(12), 651 (1973). [CrossRef]
  22. G. E. Jellison and F. A. Modine, “Optical constants for silicon at 300 and 10 K determined from 1.64 to 4.73 eV by ellipsometry,” J. Appl. Phys.53(5), 3745 (1982). [CrossRef]
  23. M. Tajima and S. Ibuka, “Luminescence due to electron-hole condensation in silicon-on-insulator,” J. Appl. Phys.84(4), 2224 (1998). [CrossRef]
  24. C. Maleville, B. Aspar, T. Poumeyrol, H. Moriceau, M. Bruel, A. J. Auberton-Herve, and T. Barge, “Wafer bonding and H-implantation mechanisms involved in the smart-cut technology,” Mater. Sci. Eng. B46(1-3), 14–19 (1997). [CrossRef]
  25. S.-J. Park, A. Persaud, J. A. Liddle, J. Nilsson, J. Bokor, D. H. Schneider, I. W. Rangelow, and T. Schenkel, “Processing issues in top-down approaches to quantum computer development in silicon,” Microelectron. Eng.73–74, 695–700 (2004). [CrossRef]
  26. T. Schenkel, A. Persaud, S. J. Park, J. Nilsson, J. Bokor, J. A. Liddle, R. Keller, D. H. Schneider, D. W. Cheng, and D. E. Humphries, “Solid state quantum computer development in silicon with single ion implantation,” J. Appl. Phys.94(11), 7017 (2003). [CrossRef]
  27. J. Dabrowski, H.-J. Müssig, V. Zavodinsky, R. Baierle, and M. J. Caldas, “Mechanism of dopant segregation to SiO2/Si(001) interfaces,” Phys. Rev. B65(24), 245305 (2002). [CrossRef]
  28. P. J. Dean, W. F. Flood, and G. Kaminsky, “Absrption due to bound excitons in silicon,” Phys. Rev.163(3), 721–725 (1967). [CrossRef]
  29. T. Nishino, H. Nakayama, and Y. Hamakawa, “On the bound-exciton luminescence from highly doped silicon,” J. Phys. Soc. Jpn.43(5), 1807–1808 (1977). [CrossRef]
  30. S. Ibuka and M. Tajima, “Temporal decay measurement of condensate luminescence and its application to characterization of silicon-on-insulator wafers,” J. Appl. Phys.91(8), 5035 (2002). [CrossRef]
  31. Y. Shiraki and H. Nakashima, “Photoluminescence observation of donor pairs in silicon,” Solid State Commun.29(3), 295–298 (1979). [CrossRef]
  32. M. Levy, P. Y. Yu, Y. Zhang, and M. P. Sarachik, “Photoluminescence of heavily doped, compensated Si:P,B,” Phys. Rev. B Condens. Matter49(3), 1677–1684 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited