OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25298–25311

Loss compensation in long-range dielectric-loaded surface plasmon-polariton waveguides

Sonia M. García-Blanco, Markus Pollnau, and Sergey I. Bozhevolnyi  »View Author Affiliations


Optics Express, Vol. 19, Issue 25, pp. 25298-25311 (2011)
http://dx.doi.org/10.1364/OE.19.025298


View Full Text Article

Enhanced HTML    Acrobat PDF (2719 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Loss compensation in long-range dielectric-loaded surface plasmon-polariton waveguides is theoretically analyzed when rare-earth-doped double tungstate crystalline material is used as the gain medium in three different waveguide configurations. We study the effect of waveguide geometry on loss compensation at the telecom wavelength of 1.55 μm, and demonstrate that a material gain as small as 12.5 dB/cm is sufficient for lossless propagation of plasmonic modes with sub-micron lateral confinement when using waveguide ridges with gain.

© 2011 OSA

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(230.7370) Optical devices : Waveguides
(250.5403) Optoelectronics : Plasmonics
(230.4480) Optical devices : Optical amplifiers

ToC Category:
Optics at Surfaces

History
Original Manuscript: September 6, 2011
Revised Manuscript: September 29, 2011
Manuscript Accepted: September 29, 2011
Published: November 23, 2011

Citation
Sonia M. García-Blanco, Markus Pollnau, and Sergey I. Bozhevolnyi, "Loss compensation in long-range dielectric-loaded surface plasmon-polariton waveguides," Opt. Express 19, 25298-25311 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-25-25298


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Q. Min, C. Chen, P. Berini, and R. Gordon, “Long range surface plasmons on asymmetric suspended thin film structures for biosensing applications,” Opt. Express18(18), 19009–19019 (2010). [CrossRef] [PubMed]
  2. M. Mansuripur, A. R. Zakharian, A. Lesuffleur, S.-H. Oh, R. J. Jones, N. C. Lindquist, H. Im, A. Kobyakov, and J. V. Moloney, “Plasmonic nano-structures for optical data storage,” Opt. Express17(16), 14001–14014 (2009). [CrossRef] [PubMed]
  3. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  4. S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford Publishing Pte. Ltd, 2009).
  5. J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express18(2), 1207–1216 (2010). [CrossRef] [PubMed]
  6. O. Tsilipakos, E. E. Kriezis, and S. I. Bozhevolnyi, “Thermo-optic microring resonator switching elements made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.109(7), 073111 (2011). [CrossRef]
  7. A. V. Krasavin and A. V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express18(11), 11791–11799 (2010). [CrossRef] [PubMed]
  8. S. A. Maier, “Plasmonics: The promise of highly integrated optical devices,” IEEE J. Sel. Top. Quantum Electron.12(6), 1671–1677 (2006). [CrossRef]
  9. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008). [CrossRef]
  10. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006). [CrossRef]
  11. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006). [CrossRef] [PubMed]
  12. A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A77(2), 021804 (2008). [CrossRef]
  13. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B75(24), 245405 (2007). [CrossRef]
  14. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B61(15), 10484–10503 (2000). [CrossRef]
  15. T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express18(22), 23009–23015 (2010). [CrossRef] [PubMed]
  16. J. Gosciniak, T. Holmgaard, and S. I. Bozhevolnyi, “Theoretical analysis of long-range dielectric-loaded surface plasmon polariton waveguides,” J. Lightwave Technol.29(10), 1473–1481 (2011). [CrossRef]
  17. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express16(2), 1385–1392 (2008). [CrossRef] [PubMed]
  18. M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics4(7), 457–461 (2010). [CrossRef]
  19. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett.9(8), 2935–2939 (2009). [CrossRef] [PubMed]
  20. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics4(6), 382–387 (2010). [CrossRef]
  21. X. Zhang, Y. Li, T. Li, S. Y. Lee, C. Feng, L. Wang, and T. Mei, “Gain-assisted propagation of surface plasmon polaritons via electrically pumped quantum wells,” Opt. Lett.35(18), 3075–3077 (2010). [CrossRef] [PubMed]
  22. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Gain assisted surface plasmon polariton in quantum wells structures,” Opt. Express15(1), 176–182 (2007). [CrossRef] [PubMed]
  23. A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett.11(6), 2231–2235 (2011). [CrossRef] [PubMed]
  24. P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett.35(8), 1197–1199 (2010). [CrossRef] [PubMed]
  25. I. P. Radko, M. G. Nielsen, O. Albrektsen, and S. I. Bozhevolnyi, “Stimulated emission of surface plasmon polaritons by lead-sulphide quantum dots at near infra-red wavelengths,” Opt. Express18(18), 18633–18641 (2010). [CrossRef] [PubMed]
  26. R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater.10(2), 110–113 (2011). [CrossRef] [PubMed]
  27. R. A. Flynn, C. S. Kim, I. Vurgaftman, M. Kim, J. R. Meyer, A. J. Mäkinen, K. Bussmann, L. Cheng, F. S. Choa, and J. P. Long, “A room-temperature semiconductor spaser operating near 1.5 μm,” Opt. Express19(9), 8954–8961 (2011). [CrossRef] [PubMed]
  28. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007). [CrossRef]
  29. D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. (Deerfield Beach Fla.) (accepted).
  30. J. D. Bradley, M. Costa e Silva, M. Gay, L. Bramerie, A. Driessen, K. Wörhoff, J. C. Simon, and M. Pollnau, “170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon,” Opt. Express17, 22201–22208 (2009). [CrossRef] [PubMed]
  31. E. H. Bernhardi, H. A. G. M. van Wolferen, L. Agazzi, M. R. H. Khan, C. G. H. Roeloffzen, K. Wörhoff, M. Pollnau, and R. M. de Ridder, “Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon,” Opt. Lett.35(14), 2394–2396 (2010). [CrossRef] [PubMed]
  32. N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, and G. Huber, “Pulsed laser operation of Y b-dope d KY(WO4))2 and KGd(WO4))2.,” Opt. Lett.22(17), 1317–1319 (1997). [CrossRef] [PubMed]
  33. M. L. Thèye, “Investigation of the optical properties of Au by means of thin semitransparent films,” Phys. Rev. B2(8), 3060–3078 (1970). [CrossRef]
  34. R. H. French, J. M. Rodríguez-Parada, M. K. Yang, R. A. Derryberry, and N. T. Pfeiffenberger, “Optical properties of polymeric materials for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells95(8), 2077–2086 (2011). [CrossRef]
  35. http://www.phoenixbv.com/index.php

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited