OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25320–25327

Anomalous flow of light near a photonic crystal pseudo-gap

Kyle M. Douglass, Sajeev John, Takashi Suezaki, Geoffrey A. Ozin, and Aristide Dogariu  »View Author Affiliations

Optics Express, Vol. 19, Issue 25, pp. 25320-25327 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (755 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two different transport regimes of light are observed in reflection from the same disordered photonic crystal. A model based on the scaling theory of localization explains the behavior of the path length-resolved reflection at two different probing wavelengths. Our results demonstrate the continuous renormalization of the photon diffusion coefficient measured in reflection from random media.

© 2011 OSA

OCIS Codes
(290.1990) Scattering : Diffusion
(160.5293) Materials : Photonic bandgap materials

ToC Category:
Photonic Crystals

Original Manuscript: October 11, 2011
Revised Manuscript: November 14, 2011
Manuscript Accepted: November 17, 2011
Published: November 28, 2011

Kyle M. Douglass, Sajeev John, Takashi Suezaki, Geoffrey A. Ozin, and Aristide Dogariu, "Anomalous flow of light near a photonic crystal pseudo-gap," Opt. Express 19, 25320-25327 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ishimaru, Wave Propagation in Random Media (John Wiley & Sons, 1999).
  2. M. C. W. van Rossum and T. M. N. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71(1), 313–371 (1999). [CrossRef]
  3. Y. Kuga and A. Ishimaru, “Retroreflectance from a dense distribution of spherical particles,” J. Opt. Soc. Am. A 1(8), 831–835 (1984). [CrossRef]
  4. A. Z. Genack and A. A. Chabanov, “Signatures of photon localization,” J. Phys. Math. Gen. 38(49), 10465–10488 (2005). [CrossRef]
  5. F. Scheffold and G. Maret, “Universal conductance fluctuations of light,” Phys. Rev. Lett. 81(26), 5800–5803 (1998). [CrossRef]
  6. P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109(5), 1492–1505 (1958). [CrossRef]
  7. S. John and M. J. Stephen, “Wave propagation and localization in a long-range correlated random potential,” Phys. Rev. B 28(11), 6358–6368 (1983). [CrossRef]
  8. S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53(22), 2169–2172 (1984). [CrossRef]
  9. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  10. S. John and R. Rangarajan, “Optimal structures for classical wave localization: An alternative to the Ioffe-Regel criterion,” Phys. Rev. B Condens. Matter 38(14), 10101–10104 (1988). [CrossRef] [PubMed]
  11. M. Störzer, P. Gross, C. M. Aegerter, and G. Maret, “Observation of the critical regime near Anderson localization of light,” Phys. Rev. Lett. 96(6), 063904–063907 (2006). [CrossRef] [PubMed]
  12. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997). [CrossRef]
  13. T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007). [CrossRef] [PubMed]
  14. E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, “Scaling theory of localization: absence of quantum diffusion in two dimensions,” Phys. Rev. Lett. 42(10), 673–676 (1979). [CrossRef]
  15. C. Toninelli, E. Vekris, G. A. Ozin, S. John, and D. S. Wiersma, “Exceptional reduction of the diffusion constant in partially disordered photonic crystals,” Phys. Rev. Lett. 101(12), 123901 (2008). [CrossRef] [PubMed]
  16. P. W. Anderson, “The question of classical localization: a theory of white paint?” Philos. Mag. B 52(3), 505–509 (1985). [CrossRef]
  17. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989). [CrossRef] [PubMed]
  18. G. Popescu and A. Dogariu, “Optical path-length spectroscopy of wave propagation in random media,” Opt. Lett. 24(7), 442–444 (1999). [CrossRef] [PubMed]
  19. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel; “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000). [CrossRef] [PubMed]
  20. C. Conti and A. Fratalocchi, “Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals,” Nat. Phys. 4(10), 794–798 (2008). [CrossRef]
  21. P. M. Johnson, A. Imhof, B. P. J. Bret, J. G. Rivas, and A. Lagendijk, “Time-resolved pulse propagation in a strongly scattering material,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(1), 016604 (2003). [CrossRef] [PubMed]
  22. J. X. Zhu, D. J. Pine, and D. A. Weitz, “Internal reflection of diffusive light in random media,” Phys. Rev. A 44(6), 3948–3959 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited