OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25397–25411

A Source-Model Technique for analysis of wave guiding along chains of metallic nanowires in layered media

Dana Szafranek and Yehuda Leviatan  »View Author Affiliations


Optics Express, Vol. 19, Issue 25, pp. 25397-25411 (2011)
http://dx.doi.org/10.1364/OE.19.025397


View Full Text Article

Enhanced HTML    Acrobat PDF (1561 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method for determining the modes that can be guided along infinite chains of metallic nanowires when they are embedded, as in most realistic set-ups, in layered media is presented. The method is based on a rigorous full-wave frequency-domain Source-Model Technique (SMT). The method allows efficient determination of the complex propagation constants and the surface-plasmon type modal fields. Sample results are presented for silver nanowires with circular and triangle-like cross-sections lying in an air-Si-glass layered structure.

© 2011 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optics at Surfaces

History
Original Manuscript: August 15, 2011
Revised Manuscript: October 31, 2011
Manuscript Accepted: November 5, 2011
Published: November 28, 2011

Citation
Dana Szafranek and Yehuda Leviatan, "A Source-Model Technique for analysis of wave guiding along chains of metallic nanowires in layered media," Opt. Express 19, 25397-25411 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-25-25397


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A21, 2442–2446 (2004). [CrossRef]
  2. P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express14, 13030–13042 (2006). [CrossRef] [PubMed]
  3. R. Buckley and P. Berini, “Figures of merit for 2d surface plasmon waveguides and application to metal stripes,” Opt. Express15, 12174–12182 (2007). [CrossRef] [PubMed]
  4. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett.23, 1331–1333 (1998). [CrossRef]
  5. S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett.81, 1714–1716 (2002). [CrossRef]
  6. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B67, 205402 (2003). [CrossRef]
  7. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Materials2, 229–232 (2003). [CrossRef] [PubMed]
  8. S. K. Gray and T. Kupka, “Propagation of light in metallic nanowire arrays: Finite-Difference Time-Domain studies of silver cylinders,” Phys. Rev. B68, 045415 (2003). [CrossRef]
  9. W. Saj, “FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice,” Opt. Express13, 4818–4827 (2005). [CrossRef] [PubMed]
  10. X. Ji, W. Cai, and P. Zhang, “High-order DGTD methods for dispersive maxwell’s equations and modelling of silver nanowire coupling,” Int. J. Numer. Meth. Eng.69, 308–325 (2007). [CrossRef]
  11. H. S. Chu, W. B. Ewe, and E. P. Li, “Optical properties of a single-chain of elliptical silver nanowires,” in Proceedings of the 7th IEEE International Conference on Nanotechnology (IEEE2007), pp. 850–853.
  12. H. S. Chu, W. B. Ewe, E. P. Li, and R. Vahldieck, “Analysis of sub-wavelength light propagation through long double-chain nanowires with funnel feeding,” Opt. Express15, 4216–4223 (2007). [CrossRef] [PubMed]
  13. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B62, R16356–R16359 (2000). [CrossRef]
  14. W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B70, 125429 (2004). [CrossRef]
  15. D. S. Citrin, “Coherent excitation transport in metalnanoparticle chains,” Nano Lett.4, 1561–1565 (2004). [CrossRef]
  16. A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B74, 033402 (2006). [CrossRef]
  17. A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B74, 205436 (2006). [CrossRef]
  18. K. H. Fung and C. T. Chan, “Plasmonic modes in periodic metal nanoparticle chains: a direct dynamic eigenmode analysis,” Opt. Lett.32, 973–975 (2007). [CrossRef] [PubMed]
  19. A. A. Govyadinov and V. A. Markel, “From slow to superluminal propagation: Dispersive properties of surface plasmon polaritons in linear chains of metallic nanospheroids,” Phys. Rev. B78, 035403 (2008). [CrossRef]
  20. T. Yang and K. B. Crozier, “Dispersion and extinction of surface plasmons in an array of gold nanoparticle chains: influence of the air/glass interface,” Opt. Express16, 8570–8580 (2008). [CrossRef] [PubMed]
  21. E. Simsek, “Full analytical model for obtaining surface plasmon resonance modes of metal nanoparticle structures embedded in layered media,” Opt. Express18, 1722–1733 (2010). [CrossRef] [PubMed]
  22. M. Conforti and M. Guasoni, “Dispersive properties of linear chains of lossy metal nanoparticles,” J. Opt. Soc. Am. B27, 1576–1582 (2010). [CrossRef]
  23. N. Talebi and M. Shahabdi, “Analysis of the propagation of light along an array of nanorods using the Generalized Multipole Techniques,” J. Comput. Theor. Nanosci.5, 711–716(6) (2008). [CrossRef]
  24. A. Hochman and Y. Leviatan, “Rigorous modal analysis of metallic nanowire chains,” Opt. Express17, 13561–13575 (2009). [CrossRef] [PubMed]
  25. Y. Leviatan and A. Boag, “Generalized formulations for electromagnetic scattering from perfectly conducting and homogeneous material bodies-theory and numerical solution,” IEEE Trans. Antennas Propag.36, 1722 –1734 (1988). [CrossRef]
  26. C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech House, Norwood, MA, 1990).
  27. O. M. Bucci, G. D’Elia, and M. Santojanni, “Non-redundant implementation of Method of Auxiliary Sources for smooth 2D geometries,” Electronics Letters41, 1203–1205 (2005). [CrossRef]
  28. G. Tayeb and S. Enoch, “Combined fictitious-sources-scattering-matrix method,” J. Opt. Soc. Am. A21, 1417–1423 (2004). [CrossRef]
  29. D. Maystre, M. Saillard, and G. Tayeb, “Special methods of wave diffraction,” in Scattering,, P. Sabatier and E. Pike, eds. (Academic Press, 2001), chap. 1.5.6.
  30. G. Fairweather and A. Karageorghis, “The Method of Fundamental Solutions for elliptic boundary value problems,” Adv. Comput. Math.9, 69–95 (1998). [CrossRef]
  31. R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag, 1980).
  32. A. Boag, Y. Leviatan, and A. Boag, “Analysis of two-dimensional electromagnetic scattering from a periodic grating of cylinders using a hybrid current model,” Radio Sci.23, 612–624 (1988). [CrossRef]
  33. A. Boag and Y. Leviatan, “Analysis of two-dimensional electromagnetic scattering from nonplanar periodic surfaces using a strip current model,” IEEE Trans. Antennas Propag.37, 1437 –1446 (1989). [CrossRef]
  34. A. Ludwig and Y. Leviatan, “Analysis of bandgap characteristics of two-dimensional periodic structures by using the Source-Model Technique,” J. Opt. Soc. Am. A20, 1553–1562 (2003). [CrossRef]
  35. M. Szpulak, W. Urbanczyk, E. Serebryannikov, A. Zheltikov, A. Hochman, Y. Leviatan, R. Kotynski, and K. Panajotov, “Comparison of different methods for rigorous modeling of photonic crystal fibers,” Opt. Express14, 5699–5714 (2006). [CrossRef] [PubMed]
  36. Y. Leviatan and A. Boag, “Analysis of TE scattering from dielectric cylinders using a multifilament magnetic current model,” IEEE Trans. Antennas Propag.36, 1026 –1031 (1988). [CrossRef]
  37. F. Capolino, D. Wilton, and W. Johnson, “Efficient computation of the 3D Green’s function for the Helmholtz operator for a linear array of point sources using the Ewald method,” J. Comput. Phys.223, 250 – 261 (2007). [CrossRef]
  38. G. Valerio, P. Baccarelli, P. Burghignoli, and A. Galli, “Comparative analysis of acceleration techniques for 2-D and 3-D Green’s functions in periodic structures along one and two directions,” IEEE Trans. Antennas Propag.55, 1630–1643 (2007). [CrossRef]
  39. A. Boag, Y. Leviatan, and A. Boag, “Analysis of diffraction from doubly periodic arrays of perfectly conducting bodies by using a patch-current model,” J. Opt. Soc. Am. A7, 1712–1718 (1990). [CrossRef]
  40. F. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proceedings of the IEEE66, 51–83 (1978). [CrossRef]
  41. W. Schroeder and I. Wolff, “The origin of spurious modes in numerical solutions of electromagnetic field eigenvalue problems,” IEEE Trans. Microw. Theory42, 644 –653 (1994). [CrossRef]
  42. A. Hochman and Y. Leviatan, “Efficient and spurious-free integral-equation-based optical waveguide mode solver,” Opt. Express15, 14431–14453 (2007). [CrossRef] [PubMed]
  43. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  44. Virginia Semiconductor Inc., “Optical properties of Silicon,” http://www.virginiasemi.com/pdf/OpticalPropertiesofSilicon71502.doc .
  45. B. Prade and J. Y. Vinet, “Guided optical waves in fibers with negative dielectric constant,” J. Lightwave Technol.12, 6–18 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited