OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25412–25417

503MHz repetition rate femtosecond Yb:fiber ring laser with an integrated WDM collimator

Aimin Wang, Hongyu Yang, and Zhigang Zhang  »View Author Affiliations

Optics Express, Vol. 19, Issue 25, pp. 25412-25417 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (815 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate 503MHz fundamental high repetition rate operation in a ring cavity passively mode-locked Yb:fiber laser incorporating a novel wavelength–division-multiplexing collimator and a piece of all-solid photonic bandgap fiber. The Yb doped fiber was directly fabricated as one fiber pigtail into the functional collimator, greatly shortening the cavity length and facilitating the splicing operation. A 5cm long photonic bandgap fiber with abnormal dispersion at the lasing wavelength (centered at 1030nm) decreases the net dispersion for shorter output pulses. The spectral bandwidth of the pulse was 34nm. The direct output pulse was measured to be 156fs and the dechirped pulse was about 76fs. With this innovative Yb:fiber pigtailed WDM collimator, the ring cavity laser has the potential to work at a repetition rate up to GHz.

© 2011 OSA

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 24, 2011
Revised Manuscript: November 13, 2011
Manuscript Accepted: November 16, 2011
Published: November 28, 2011

Aimin Wang, Hongyu Yang, and Zhigang Zhang, "503MHz repetition rate femtosecond Yb:fiber ring laser with an integrated WDM collimator," Opt. Express 19, 25412-25417 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. T. Cundiff, “Metrology: new generation of combs,” Nature 450(7173), 1175–1176 (2007). [CrossRef] [PubMed]
  2. A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007). [CrossRef] [PubMed]
  3. T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. 405(1), L16–L20 (2010). [CrossRef]
  4. T. Wilken, T. Hänsch, Th. Udem, T. Steinmetz, R. Holzwarth, A. Manescau, G. Curto, L. Pasquini, and C. Lovis, “High precision calibration of spectrographs in astronomy,” Conference on Laser and Electro-Optics (CLEO) paper CMHH3 (2010).
  5. I. Hartl, A. Romann, and M. Fermann, “Passively mode locked GHz femtosecond Yb-fiber laser using an intra-cavity martinez compressor,” Conference on Laser and Electro-Optics (CLEO), paper CMD3 (2011).
  6. M. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Quantum Electron. 15(1), 191–206 (2009). [CrossRef]
  7. M. Sander, H. Byun, J. Morse, D. Chao, H. Shen, A. Motamedi, G. Petrich, L. Kolodziejski, E. Ippen, and F. Kärtner, “1 GHz femtosecond Erbium-doped fiber lasers,” Conference on Laser and Electro-Optics (CLEO), paper CTuII1 (2010).
  8. I. Hartl, H. Mckay, R. Thapa, B. Thomas, A. Ruehl, L. Dong and M. Fermann, “Fully stabilized GHz Yb-fiber laser frequency comb,” Advanced Solid-State Photonics, OSA Technical Digest Series (CD), paper MF9 (2009).
  9. M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, “Mode locking with cross-phase and self-phase modulation,” Opt. Lett. 16(7), 502–504 (1991). [CrossRef] [PubMed]
  10. F. Ilday, J. Chen, and F. Kärtner, “Generation of sub-100-fs pulses at up to 200 MHz repetition rate from a passively mode-locked Yb-doped fiber laser,” Opt. Express 13(7), 2716–2721 (2005). [CrossRef] [PubMed]
  11. T. Wilken, P. Vilar-Welter, T. Hänsch, and Th. Udem, “High repetition rate, tunable femtosecond Yb-fiber laser,” Conference on Laser and Electro-Optics (CLEO), paper CFK2 (2010).
  12. J. Soto-Crespo, N. Akhemediev, V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(4), 4783–4796 (1997). [CrossRef]
  13. A. Chong, W. H. Renninger, and F. W. Wise, “Route to the minimum pulse duration in normal-dispersion fiber lasers,” Opt. Lett. 33(22), 2638–2640 (2008). [CrossRef] [PubMed]
  14. L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, “Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb,” Opt. Lett. 36(9), 1578–1580 (2011). [CrossRef] [PubMed]
  15. Y. Song, C. Kim, K. Jung, H. Kim, and J. Kim, “Timing jitter optimization of mode-locked Yb-fiber lasers toward the attosecond regime,” Opt. Express 19(15), 14518–14525 (2011).
  16. H. Lim, F. Ilday, and F. Wise, “Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control,” Opt. Express 10(25), 1497–1502 (2002). [PubMed]
  17. H. Lim and F. Wise, “Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber,” Opt. Express 12(10), 2231–2235 (2004). [CrossRef] [PubMed]
  18. A. Isomäki and O. G. Okhotnikov, “Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber,” Opt. Express 14(20), 9238–9243 (2006). [CrossRef] [PubMed]
  19. V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(6), 061113 (2008). [CrossRef]
  20. J. W. Nicholson, J. Jasapara, W. Rudolph, F. G. Omenetto, and A. J. Taylor, “Full-field characterization of femtosecond pulses by spectrum and cross-correlation measurements,” Opt. Lett. 24(23), 1774–1776 (1999). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited