OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25433–25440

Local conversion of four Einstein-Podolsky-Rosen photon pairs into four-photon polarization-entangled decoherence-free states with non-photon-number-resolving detectors

Hong-Fu Wang, Shou Zhang, Ai-Dong Zhu, X. X. Yi, and Kyu-Hwang Yeon  »View Author Affiliations

Optics Express, Vol. 19, Issue 25, pp. 25433-25440 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (988 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a linear-optics-based scheme for local conversion of four Einstein-Podolsky-Rosen photon pairs distributed among five parties into four-photon polarization-entangled decoherence-free states using local operations and classical communication. The proposed setup involves simple linear optical elements and non-photon-number-resolving detectors that can only distinguish between the presence and absence of photons, and no information on the exact number of photons can be obtained. This greatly simplifies the experimental realization for linear optical quantum computation and quantum information processing.

© 2011 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: September 26, 2011
Revised Manuscript: October 25, 2011
Manuscript Accepted: October 27, 2011
Published: November 29, 2011

Hong-Fu Wang, Shou Zhang, Ai-Dong Zhu, X. X. Yi, and Kyu-Hwang Yeon, "Local conversion of four Einstein-Podolsky-Rosen photon pairs into four-photon polarization-entangled decoherence-free states with non-photon-number-resolving detectors," Opt. Express 19, 25433-25440 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef] [PubMed]
  2. L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325 (1997). [CrossRef]
  3. H. F. Wang and S. Zhang, “Linear optical generation of multipartite entanglement with conventional photon detectors,” Phys. Rev. A 79, 042336 (2009). [CrossRef]
  4. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Proceessing, Bangalore, India, (IEEE, New York, 1984), 175–179. [PubMed]
  5. M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999). [CrossRef]
  6. H. F. Wang, X. Ji, and S. Zhang, “Improving the security of multiparty quantum secret splitting and quantum state sharing,” Phys. Lett. A 358, 11–14 (2006). [CrossRef]
  7. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992). [CrossRef] [PubMed]
  8. C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121–3124 (1992). [CrossRef] [PubMed]
  9. K. Boströem and T. Felbinger, “Deterministic secure direct communication using entanglement,” Phys. Rev. Lett. 89, 187902 (2002). [CrossRef]
  10. A. D. Zhu, Y. Xia, Q. B. Fan, and S. Zhang, “Secure direct communication based on secret transmitting order of particles,” Phys. Rev. A,  73, 022338 (2006). [CrossRef]
  11. D. A. Lidar, D. Bacon, and K. B. Whaley, “Concatenating decoherence-free subspaces with quantum error correcting codes,” Phys. Rev. Lett. 82, 4556–4559 (1999). [CrossRef]
  12. J. Kempe, D. Bacon, D. A. Lidar, and K. B. Whaley, “Theory of decoherence-free fault-tolerant universal quantum computation,” Phys. Rev. A 63, 042307 (2001). [CrossRef]
  13. M. Bourennane, M. Eibl, S. Gaertner, C. Kurtsiefer, A. Cabello, and H. Weinfurter, “Decoherence-free quantum information processing with four-photon entangled states,” Phys. Rev. Lett. 92, 107901 (2004). [CrossRef] [PubMed]
  14. X. B. Zou, J. Shu, and G. C. Guo, “Simple scheme for generating four-photon polarization-entangled decoherence-free states using spontaneous parametric down-conversions,” Phys. Rev. A 73, 054301 (2006) [CrossRef]
  15. Y. X. Gong, X. B. Zou, X. L. Niu, J. Li, Y. F. Huang, and G. C. Guo, “Generation of arbitrary four-photon polarization-entangled decoherence-free states,” Phys. Rev. A 77, 042317 (2008). [CrossRef]
  16. P. Kok and S. L. Braunstein, “Postselected versus nonpostselected quantum teleportation using parametric down-conversion,” Phys. Rev. A 61, 042304 (2000). [CrossRef]
  17. T. Yamamoto, K. Hayashi, S. K. Özdemir, M. Koashi, and N. Imoto, “Robust photonic entanglement distribution by state-independent encoding onto decoherence-free subspace,” Nat. Photon. 2, 488–491 (2008). [CrossRef]
  18. P. Walther, K. J. Resch, and A. Zeilinger, “Local conversion of Greenberger-Horne-Zeilinger states to approximate W states,” Phys. Rev. Lett. 94, 240501 (2005). [CrossRef]
  19. T. Tashima, T. Wakatsuki, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon W state,” Phys. Rev. Lett. 102, 130502 (2009). [CrossRef] [PubMed]
  20. C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007). [CrossRef]
  21. S. Glancy, J. M. LoSecco, H. M. Vasconcelos, and C. E. Tanner, “Imperfect detectors in linear optical quantum computers,” Phys. Rev. A 65, 062317 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited