## Local conversion of four Einstein-Podolsky-Rosen photon pairs into four-photon polarization-entangled decoherence-free states with non-photon-number-resolving detectors |

Optics Express, Vol. 19, Issue 25, pp. 25433-25440 (2011)

http://dx.doi.org/10.1364/OE.19.025433

Enhanced HTML Acrobat PDF (988 KB)

### Abstract

We propose a linear-optics-based scheme for local conversion of four Einstein-Podolsky-Rosen photon pairs distributed among five parties into four-photon polarization-entangled decoherence-free states using local operations and classical communication. The proposed setup involves simple linear optical elements and non-photon-number-resolving detectors that can only distinguish between the presence and absence of photons, and no information on the exact number of photons can be obtained. This greatly simplifies the experimental realization for linear optical quantum computation and quantum information processing.

© 2011 OSA

**OCIS Codes**

(270.0270) Quantum optics : Quantum optics

(270.5585) Quantum optics : Quantum information and processing

**ToC Category:**

Quantum Optics

**History**

Original Manuscript: September 26, 2011

Revised Manuscript: October 25, 2011

Manuscript Accepted: October 27, 2011

Published: November 29, 2011

**Citation**

Hong-Fu Wang, Shou Zhang, Ai-Dong Zhu, X. X. Yi, and Kyu-Hwang Yeon, "Local conversion of four Einstein-Podolsky-Rosen photon pairs into four-photon polarization-entangled decoherence-free states with non-photon-number-resolving detectors," Opt. Express **19**, 25433-25440 (2011)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-25-25433

Sort: Year | Journal | Reset

### References

- C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett.70, 1895–1899 (1993). [CrossRef] [PubMed]
- L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett.79, 325 (1997). [CrossRef]
- H. F. Wang and S. Zhang, “Linear optical generation of multipartite entanglement with conventional photon detectors,” Phys. Rev. A79, 042336 (2009). [CrossRef]
- C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Proceessing, Bangalore, India, (IEEE, New York, 1984), 175–179. [PubMed]
- M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A59, 1829–1834 (1999). [CrossRef]
- H. F. Wang, X. Ji, and S. Zhang, “Improving the security of multiparty quantum secret splitting and quantum state sharing,” Phys. Lett. A358, 11–14 (2006). [CrossRef]
- C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett.69, 2881–2884 (1992). [CrossRef] [PubMed]
- C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett.68, 3121–3124 (1992). [CrossRef] [PubMed]
- K. Boströem and T. Felbinger, “Deterministic secure direct communication using entanglement,” Phys. Rev. Lett.89, 187902 (2002). [CrossRef]
- A. D. Zhu, Y. Xia, Q. B. Fan, and S. Zhang, “Secure direct communication based on secret transmitting order of particles,” Phys. Rev. A, 73, 022338 (2006). [CrossRef]
- D. A. Lidar, D. Bacon, and K. B. Whaley, “Concatenating decoherence-free subspaces with quantum error correcting codes,” Phys. Rev. Lett.82, 4556–4559 (1999). [CrossRef]
- J. Kempe, D. Bacon, D. A. Lidar, and K. B. Whaley, “Theory of decoherence-free fault-tolerant universal quantum computation,” Phys. Rev. A63, 042307 (2001). [CrossRef]
- M. Bourennane, M. Eibl, S. Gaertner, C. Kurtsiefer, A. Cabello, and H. Weinfurter, “Decoherence-free quantum information processing with four-photon entangled states,” Phys. Rev. Lett.92, 107901 (2004). [CrossRef] [PubMed]
- X. B. Zou, J. Shu, and G. C. Guo, “Simple scheme for generating four-photon polarization-entangled decoherence-free states using spontaneous parametric down-conversions,” Phys. Rev. A73, 054301 (2006) [CrossRef]
- Y. X. Gong, X. B. Zou, X. L. Niu, J. Li, Y. F. Huang, and G. C. Guo, “Generation of arbitrary four-photon polarization-entangled decoherence-free states,” Phys. Rev. A77, 042317 (2008). [CrossRef]
- P. Kok and S. L. Braunstein, “Postselected versus nonpostselected quantum teleportation using parametric down-conversion,” Phys. Rev. A61, 042304 (2000). [CrossRef]
- T. Yamamoto, K. Hayashi, S. K. Özdemir, M. Koashi, and N. Imoto, “Robust photonic entanglement distribution by state-independent encoding onto decoherence-free subspace,” Nat. Photon.2, 488–491 (2008). [CrossRef]
- P. Walther, K. J. Resch, and A. Zeilinger, “Local conversion of Greenberger-Horne-Zeilinger states to approximate W states,” Phys. Rev. Lett.94, 240501 (2005). [CrossRef]
- T. Tashima, T. Wakatsuki, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon W state,” Phys. Rev. Lett.102, 130502 (2009). [CrossRef] [PubMed]
- C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys.3, 91–95 (2007). [CrossRef]
- S. Glancy, J. M. LoSecco, H. M. Vasconcelos, and C. E. Tanner, “Imperfect detectors in linear optical quantum computers,” Phys. Rev. A65, 062317 (2002). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.