OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25447–25453

Improved method for hot embossing As2S3 waveguides employing a thermally stable chalcogenide coating

Ting Han, Steve Madden, Sukhanta Debbarma, and Barry Luther-Davies  »View Author Affiliations

Optics Express, Vol. 19, Issue 25, pp. 25447-25453 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2422 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the fabrication of As2S3 rib waveguides using hot embossing. Because of the high temperature required, a thin (50nm) Ge11.5As24Se64.5 was thermally evaporated on top of an 870nm As2S3 layer to protect against surface degradation during embossing. The waveguides propagation loss was 0.52dB/cm for the TE and 0.41dB/cm for the TM polarizations at 1550nm for a waveguide cross-section dimension of 3.8 × 1μm. The nonlinearity of a 2.2μm wide waveguide was shown to be 13500W−1km−1 using four-wave mixing demonstrating that these embossed waveguides were capable of being used for all-optical processing.

© 2011 OSA

OCIS Codes
(130.4310) Integrated optics : Nonlinear
(190.4360) Nonlinear optics : Nonlinear optics, devices
(130.2755) Integrated optics : Glass waveguides

ToC Category:
Integrated Optics

Original Manuscript: October 13, 2011
Revised Manuscript: November 15, 2011
Manuscript Accepted: November 17, 2011
Published: November 29, 2011

Ting Han, Steve Madden, Sukhanta Debbarma, and Barry Luther-Davies, "Improved method for hot embossing As2S3 waveguides employing a thermally stable chalcogenide coating," Opt. Express 19, 25447-25453 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Quémard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001). [CrossRef]
  2. J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27(2), 119–121 (2002). [CrossRef] [PubMed]
  3. A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008). [CrossRef] [PubMed]
  4. M. D. Pelusi, V. G. Ta’eed, E. Libin Fu, M. R. E. Magi, S. Lamont, Madden, D. A. P. Duk-Yong Choi, B. Bulla, Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008). [CrossRef]
  5. M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009). [CrossRef] [PubMed]
  6. V. G. Ta’eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides,” Opt. Express 14(23), 11242–11247 (2006). [CrossRef] [PubMed]
  7. S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007). [CrossRef] [PubMed]
  8. D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010). [CrossRef]
  9. D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Thermal annealing of arsenic tri-sulphide thin film and its influence on device performance,” J. Appl. Phys. 107(5), 053106 (2010). [CrossRef]
  10. D. Y. Choi, S. Madden, A. Rode, R. P. Wang, A. Ankiewicz, and B. Luther-Davies, “Surface roughness in plasma-etched As2S3 films: Its origin and improvement,” IEEE Trans. Nanotechnol. 7(3), 285–290 (2008). [CrossRef]
  11. T. Han, S. Madden, B. Luther-Davies, and R. Charters, “High-quality polarization-insensitive polysiloxane waveguide gratings produced by UV nanoimprint lithography,” IEEE Photon. Technol. Lett. 22(23), 1720–1722 (2010). [CrossRef]
  12. H. Schift, “Nanoimprint lithography: an old story in modern times? a review,” J. Vac. Sci. Technol. B 26(2), 458–480 (2008). [CrossRef]
  13. X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Sol. 326, 519–523 (2003).
  14. W. J. Pan, H. Rowe, D. Zhang, Y. Zhang, A. Loni, D. Furniss, P. Sewell, T. M. Benson, and A. B. Seddon, “One-step hot embossing of optical rib waveguides in chalcogenide glasses,” Microw. Opt. Technol. Lett. 50(7), 1961–1963 (2008). [CrossRef]
  15. M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26(2), 606–610 (2008). [CrossRef]
  16. Z. G. Lian, W. Pan, D. Furniss, T. M. Benson, A. B. Seddon, T. Kohoutek, J. Orava, and T. Wagner, “Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films,” Opt. Lett. 34(8), 1234–1236 (2009). [CrossRef] [PubMed]
  17. T. Han, S. Madden, D. Bulla, and B. Luther-Davies, “Low loss chalcogenide glass waveguides by thermal nano-imprint lithography,” Opt. Express 18(18), 19286–19291 (2010). [CrossRef] [PubMed]
  18. D. Y. Choi, S. Madden, D. Bulla, R. P. Wang, A. Rode, and B. Luther-Davies, “Thermal annealing of arsenic tri-sulphide thin film and its influence on device performance,” J. Appl. Phys. 107(5), 053106 (2010). [CrossRef]
  19. X. Gai, T. Han, A. Prasad, S. Madden, D. Y. Choi, R. P. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18(25), 26635–26646 (2010). [CrossRef] [PubMed]
  20. H. Schmid and B. Michel, “Siloxane polymers for high-resolution, high-accuracy soft lithography,” Macromolecules 33(8), 3042–3049 (2000). [CrossRef]
  21. T. Han, S. Madden, M. Zhang, R. Charters, and B. Luther-Davies, “Low loss high index contrast nanoimprinted polysiloxane waveguides,” Opt. Express 17(4), 2623–2630 (2009). [CrossRef] [PubMed]
  22. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited