OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25479–25487

Temporal and spatial characterization of a pulsed gas jet by a compact high-speed high-sensitivity second-harmonic interferometer

F. Brandi and F. Giammanco  »View Author Affiliations

Optics Express, Vol. 19, Issue 25, pp. 25479-25487 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1646 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A compact modular high-speed high-sensitivity second-harmonic interferometer is used to characterize a pulsed gas jet. The temporal evolution of the line-integrated gas density is measured with a resolution of 1 μs revealing detailed information on its dynamics. The actual radial gas density distribution in the jet is obtained applying the Abel’s inversion method. The sensitivity of the interferometer is 1 mrad, and its robustness, compactness and modularity make the instrument suitable for practical application. Possible use of the instrument in monitoring cluster formation, and phase-dispersion microscopy is discussed.

© 2011 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(190.1900) Nonlinear optics : Diagnostic applications of nonlinear optics

ToC Category:
Instrumentation, Measurement, and Metrology

F. Brandi and F. Giammanco, "Temporal and spatial characterization of a pulsed gas jet by a compact high-speed high-sensitivity second-harmonic interferometer," Opt. Express 19, 25479-25487 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. T. Mohamed, G. Chen, J. Kim, G. X. Tao, J. Ahn, and D. E. Kim, “Controlling the length of a plasma waveguide up to 5mm, produced by femtosecond laser pulses in atomic clusters,” Opt. Express 19, 15919–15928 (2011). [CrossRef] [PubMed]
  2. M. Krishnan, K. W. Elliott, C. G. R. Geddes, R. A. van Mourik, W. P. Leemans, H. Murphy, and M. Clover, “Electromagnetically driven, fast opening and closing gas jet valve,” Phys. Rev. Spec. Top.- Accel. Beams 14, 033502 (2011) [CrossRef]
  3. J. Grant-Jacob, B. Mills, T. J. Butcher, R. T. Chapman, W. S Brocklesby, and J.G. Frey, “Gas jet structure influence on high order harmonic generation,” Opt. Express 19, 9801–9806 (2011). [CrossRef] [PubMed]
  4. C. Altucci, C. Beneduce, R. Bruzzese, C. de Lisio, G. S. Sorrentino, t. Starczewski, and F. Vigilante, “Characterization of pulsed gas sources for intense laser field-atom interaction experiments,” J. Phys. D: Appl. Phys. 29, 68–75 (1996). [CrossRef]
  5. T. Adachi, K. Kondo, and S. Watanabe, “Gas density measurement of pulsed gas jet using XeF four-photon fluorescence induced by a KrF laser,” Appl. Phys. B 55, 323–326 (1992) [CrossRef]
  6. H. Lu, G. Ni, R. Li, and Z. Xu, “An experimental investigation on the performance of conical nozzles for argon cluster formation in supersonic jets” J. Chem. Phys. 132124303 (2010). [CrossRef] [PubMed]
  7. T. Auguste, M. Bougeard, E. Caprin, P. D’Oliveira, and P. Monot, “Characterization of a high-density large scale pulsed gas jet for laser-gas interaction experiments,” Rev. Sci. Instrum. 70, 2349–2354 (1999) [CrossRef]
  8. F. Brandi, F. Giammanco, W. S. Harris, T. Roche, E. Trask, and F. J. Wessel, “Electron density measurements of a field-reversed configuration plasma using a novel compact ultrastable second-harmonic interferometer,” Rev. Sci. Instrum. 80, 113501 (2009). [CrossRef] [PubMed]
  9. C. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Interferometric phase-dispersion microscopy,” Opt. Lett. 25, 1526–1528 (2000). [CrossRef]
  10. D. Fu, W. Choi, Y. Sung, Z. Yaqoob, R. R. Dasari, and M. Feld, “Quantitative dispersion microscopy,” Biomed. Opt. Express 1, 347–353 (2010). [CrossRef] [PubMed]
  11. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19, 6549–6562 (2011). [CrossRef] [PubMed]
  12. F. Hopf, A. Tomita, and G. Al-Jumaily, “Second-harmonic interferometers,” Opt. Lett. 5, 386–388 (1980). [CrossRef] [PubMed]
  13. K. Alum, Y. Koval’chuk, and G. Ostrovskaya, “Nonlinear dispersive interferometer,” Sov. Tech. Phys. Lett. 7, 581–582 (1981).
  14. M. J. Buie, J. T. P. Pender, J. P. Holloway, T. Vincent, P. L. G. Ventzek, and M. L. Brake, “Abel’s inversion applied to exprerimental spectroscopic data with off axis peaks,” J. Quant. Spectrosc. Radiat. Transfer 55, 231–243 (1996). [CrossRef]
  15. V. Licht and H. Bluhm, “A sensitive dispersion interferometer with high temporal resolution for electron density measurements,” Rev. Sci. Instrum. 71, 2710–2715 (2000). [CrossRef]
  16. V. Drachev, Y. Krasnikov, and P. Bagryansky, “Dispersion interferometer for controlled fusion devices,” Rev. Sci. Instrum. 64, 1010–1013 (1993). [CrossRef]
  17. S. Velasko and D. Eimerl, “Precise measurements of optical dispersion using a new interferometric technique,” Appl. Opt. 25, 1344–1349 (1986). [CrossRef]
  18. F. Brandi and F. Giammanco, “Harmonic interferometry in the visible and UV, based on second- and third-harmonic generation of a 25 ps mode-locked Nd:YAG laser,” Opt. Lett. 33, 2071–2073 (2008) [CrossRef] [PubMed]
  19. P. Bagryansky, A. Khilchenko, A. Kvashnin, A. Solomakhin, H. Koslowsky, and T. team, “Dispersion interferometer based on a CO2 laser for TEXTOR and burning plasma experiments,” Rev. Sci. Instrum. 77, 053501 (2006). [CrossRef]
  20. P. Burdack, M. Tröbs, M. Hunnekuhl, C. Fallnich, and I. Freitag, “Modulation-free sub-Doppler laser frequency stabilization to molecular iodine with a common-path, two-color interferometer,” Opt. Express 12, 644–650 (2004). [CrossRef] [PubMed]
  21. F. Brandi and F. Giammanco, “Versatile second-harmonic interferometer with high temporal resolution and high sensitivity based on a continuous-wave Nd:YAG laser,” Opt. Lett. 32, 2327–2329 (2009). [CrossRef]
  22. V. Drachev, “Nonlinear regime of a dispersion interferometer,” Opt. Spectrosc. 75, 278–281 (1993).
  23. F. Brandi, P. Marsili, and F. Giammanco, “Compact high-speed high-sensitivity second-harmonic interferometer for electron density measurement,” in AIP conference proceedings: Burning plasma diagniostics,  988, 132–135 (2008) [CrossRef]
  24. A. Behjat, G. J. Tallents, and D. Neely, “The characterization of a high-density gas jet,” J. Phys. D: Appl. Phys. 30, 2872–2879 (1997). [CrossRef]
  25. G. Chen, B. Kim, B. Ahn, and D. E. Kim, “Experimental investigation on argon cluster sizes for conical nozzles with different opening angles,” J. Appl. Phys. 108, 064329 (2010). [CrossRef]
  26. K. Y. Kim, V. Kumarappan, and H. M. Milchberg, “Measurements of the average size and density of clusters in a gas jet,” Appl. Phys. Lett. 83, 3210–3212 (2003). [CrossRef]
  27. A. Ahn, C. Yang, A. Wax, G. Popescu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Harmonic phase-dispersion microscope with a MachZehnder interferometer,” Appl. Opt. 44, 1188–1190 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited