OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25500–25511

Mode junction photonics with a symmetry-breaking arrangement of mode-orthogonal heterostructures

Sunkyu Yu, Xianji Piao, Sukmo Koo, Jung H. Shin, Seung Hoon Lee, Bumki Min, and Namkyoo Park  »View Author Affiliations


Optics Express, Vol. 19, Issue 25, pp. 25500-25511 (2011)
http://dx.doi.org/10.1364/OE.19.025500


View Full Text Article

Enhanced HTML    Acrobat PDF (2857 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Junction structures provide the foundation of digital electronics and spintronics today. An equivalent, a photonic junction to achieve systematic and drastic control of photon flow is currently missing, but is mandatory for serious all-optical signal processing. Here we propose a photonic junction built upon mode-orthogonal hetero-structures, as a fundamental structural unit for photonic integrated circuits. Controlling the optical potential of mode-orthogonal junctions, the flow of photons can be dynamically manipulated, to complete the correspondence to the electronic junction structures. Of the possible applications, we provide examples of a photonic junction diode and a multi-junction half-adder, with exceptional performance metrics. Highly directional (41dB), nearly unity throughput, ultra-low threshold-power, high quality signal regeneration at 200Gb/s, and all-optic logic operations are successfully derived with the self-induced, bi-level dynamic mode-conversion process across the junction.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(200.4660) Optics in computing : Optical logic
(230.4320) Optical devices : Nonlinear optical devices
(230.4555) Optical devices : Coupled resonators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Integrated Optics

History
Original Manuscript: September 7, 2011
Revised Manuscript: November 9, 2011
Manuscript Accepted: November 17, 2011
Published: November 29, 2011

Citation
Sunkyu Yu, Xianji Piao, Sukmo Koo, Jung H. Shin, Seung Hoon Lee, Bumki Min, and Namkyoo Park, "Mode junction photonics with a symmetry-breaking arrangement of mode-orthogonal heterostructures," Opt. Express 19, 25500-25511 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-25-25500


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009). [CrossRef]
  2. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett.25(4), 254–256 (2000). [CrossRef] [PubMed]
  3. S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications,” Adv. Mater. (Deerfield Beach Fla.)15(6), 534–537 (2003). [CrossRef]
  4. M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater.5(9), 703–709 (2006). [CrossRef] [PubMed]
  5. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004). [CrossRef] [PubMed]
  6. M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater.3(4), 211–219 (2004). [CrossRef] [PubMed]
  7. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010). [CrossRef]
  8. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature457(7228), 455–458 (2009). [CrossRef] [PubMed]
  9. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010). [CrossRef] [PubMed]
  10. J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B22(5), 1062–1074 (2005). [CrossRef]
  11. F. Leo, S. Coen, P. Kockaert, S. Gorza, P. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics4(7), 471–476 (2010). [CrossRef]
  12. M. F. Yanik, S. Fan, M. Soljacić, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett.28(24), 2506–2508 (2003). [CrossRef] [PubMed]
  13. P. L. Li, D. X. Huang, X. L. Zhang, and G. X. Zhu, “Ultrahigh-speed all-optical half adder based on four-wave mixing in semiconductor optical amplifier,” Opt. Express14(24), 11839–11847 (2006). [CrossRef] [PubMed]
  14. Q. Liu, Z. Ouyang, C. J. Wu, C. P. Liu, and J. C. Wang, “All-optical half adder based on cross structures in two-dimensional photonic crystals,” Opt. Express16(23), 18992–19000 (2008). [CrossRef] [PubMed]
  15. S. Yu, S. Koo, and N. Park, “Coded output photonic A/D converter based on photonic crystal slow-light structures,” Opt. Express16(18), 13752–13757 (2008). [CrossRef] [PubMed]
  16. R. Slavík, F. Parmigiani, J. Kakande, C. Lundstro¨m, M. Sjo¨din, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gru¨ner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics4(10), 690–695 (2010). [CrossRef]
  17. L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics4(3), 182–187 (2010). [CrossRef]
  18. Y. J. Jung, C. W. Son, Y. M. Jhon, S. Lee, and N. Park, “One-level simplification method for all-optical combinational logic circuits,” IEEE Photon. Technol. Lett.20(10), 800–802 (2008). [CrossRef]
  19. J. H. Scaff and R. S. Ohl, “Development of silicon crystal rectifiers for microwave radar receivers,” Bell Syst. Tech. J.26, 1–30 (1947).
  20. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: a spin-based electronics vision for the future,” Science294(5546), 1488–1495 (2001). [CrossRef] [PubMed]
  21. A. A. Tulapurkar, Y. Suzuki, A. Fukushima, H. Kubota, H. Maehara, K. Tsunekawa, D. D. Djayaprawira, N. Watanabe, and S. Yuasa, “Spin-torque diode effect in magnetic tunnel junctions,” Nature438(7066), 339–342 (2005). [CrossRef] [PubMed]
  22. K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett.79(3), 314–316 (2001). [CrossRef]
  23. S. F. Mingaleev and Y. S. Kivshar, “Nonlinear transmission and light localization in photonic-crystal waveguides,” J. Opt. Soc. Am. B19(9), 2241–2249 (2002). [CrossRef]
  24. R. Philip, M. Anija, C. S. Yelleswarapu, and D. V. G. L. N. Rao, “Passive all-optical diode using asymmetric nonlinear absorption,” Appl. Phys. Lett.91(14), 141118 (2007). [CrossRef]
  25. N. Zhao, H. Zhou, Q. Guo, W. Hu, X. Yang, S. Lan, and X. Lin, “Design of highly efficient optical diodes based on the dynamics of nonlinear photonic crystal molecules,” J. Opt. Soc. Am. B23(11), 2434–2440 (2006). [CrossRef]
  26. X. S. Lin, W. Q. Wu, H. Zhou, K. F. Zhou, and S. Lan, “Enhancement of unidirectional transmission through the coupling of nonlinear photonic crystal defects,” Opt. Express14(6), 2429–2439 (2006). [CrossRef] [PubMed]
  27. V. Grigoriev and F. Biancalana, “Nonreciprocal switching thresholds in coupled nonlinear microcavities,” Opt. Lett.36(11), 2131–2133 (2011). [CrossRef] [PubMed]
  28. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3(2), 91–94 (2009). [CrossRef]
  29. G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley & Sons, 2002).
  30. J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater.4(5), 383–387 (2005). [CrossRef] [PubMed]
  31. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).
  32. X. Hu, Q. Zhang, Y. Liu, B. Cheng, and D. Zhang, “Ultrafast three-dimensional tunable photonic crystal,” Appl. Phys. Lett.83(13), 2518–2520 (2003). [CrossRef]
  33. M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(5), 055601 (2002). [CrossRef] [PubMed]
  34. J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The Nonlinear Optical Properties of AlGaAs at the Half Band Gap,” IEEE J. Quantum Electron.33(3), 341–348 (1997). [CrossRef]
  35. X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics2(3), 185–189 (2008). [CrossRef]
  36. R. W. Boyd, Nonlinear Optics (Academic Press, 1992).
  37. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett.88(4), 041112 (2006). [CrossRef]
  38. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  39. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999). [CrossRef]
  40. T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express14(1), 377–386 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited