OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25528–25534

Optical performance of top-down fabricated InGaN/GaN nanorod light emitting diode arrays

Qiming Li, Karl R. Westlake, Mary H. Crawford, Stephen R. Lee, Daniel D. Koleske, Jeffery J. Figiel, Karen C. Cross, Saeed Fathololoumi, Zetian Mi, and George T. Wang  »View Author Affiliations

Optics Express, Vol. 19, Issue 25, pp. 25528-25534 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1730 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Vertically aligned InGaN/GaN nanorod light emitting diode (LED) arrays were created from planar LED structures using a new top-down fabrication technique consisting of a plasma etch followed by an anisotropic wet etch. The wet etch results in straight, smooth, well-faceted nanorods with controllable diameters and removes the plasma etch damage. 94% of the nanorod LEDs are dislocation-free and a reduced quantum confined Stark effect is observed due to reduced piezoelectric fields. Despite these advantages, the IQE of the nanorod LEDs measured by photoluminescence is comparable to the planar LED, perhaps due to inefficient thermal transport and enhanced nonradiative surface recombination.

© 2011 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(230.3670) Optical devices : Light-emitting diodes
(250.5230) Optoelectronics : Photoluminescence
(160.4236) Materials : Nanomaterials
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Optical Devices

Original Manuscript: October 6, 2011
Revised Manuscript: November 16, 2011
Manuscript Accepted: November 17, 2011
Published: November 30, 2011

Qiming Li, Karl R. Westlake, Mary H. Crawford, Stephen R. Lee, Daniel D. Koleske, Jeffery J. Figiel, Karen C. Cross, Saeed Fathololoumi, Zetian Mi, and George T. Wang, "Optical performance of top-down fabricated InGaN/GaN nanorod light emitting diode arrays," Opt. Express 19, 25528-25534 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Kuo, L. C. Chang, C. W. Kuo, and G. C. Chi, “Efficiency improvement of GaN-based light-emitting diode prepared on GaN nanorod template,” IEEE Photon. Technol. Lett.22(4), 257–259 (2010). [CrossRef]
  2. S. D. Hersee, X. Y. Sun, and X. Wang, “The controlled growth of GaN nanowires,” Nano Lett.6(8), 1808–1811 (2006). [CrossRef] [PubMed]
  3. Q. M. Li and G. T. Wang, “Strain influenced indium composition distribution in GaN/InGaN core-shell nanowires,” Appl. Phys. Lett.97(18), 181107 (2010). [CrossRef]
  4. T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater.6(12), 951–956 (2007). [CrossRef] [PubMed]
  5. H. W. Lin, Y. J. Lu, H. Y. Chen, H. M. Lee, and S. Gwo, “InGaN/GaN nanorod array white light-emitting diode,” Appl. Phys. Lett.97(7), 073101 (2010). [CrossRef]
  6. H. Sekiguchi, K. Kishino, and A. Kikuchi, “Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate,” Appl. Phys. Lett.96(23), 231104 (2010). [CrossRef]
  7. C. Y. Wang, L. Y. Chen, C. P. Chen, Y. W. Cheng, M. Y. Ke, M. Y. Hsieh, H. M. Wu, L. H. Peng, and J. Huang, “GaN nanorod light emitting diode arrays with a nearly constant electroluminescent peak wavelength,” Opt. Express16(14), 10549–10556 (2008). [CrossRef] [PubMed]
  8. H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, and Z. Mi, “p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111),” Nano Lett.11(5), 1919–1924 (2011). [CrossRef] [PubMed]
  9. H.-M. Kim, Y.-H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays,” Nano Lett.4(6), 1059–1062 (2004). [CrossRef]
  10. K. Kishino, A. Kikuchi, H. Sekiguchi, and S. Ishizawa, “InGaN/GaN nanocolumn LEDs emitting from blue to red,” Proc. SPIE6473, 64730T (2007). [CrossRef]
  11. G. T. Wang, A. A. Talin, D. J. Werder, J. R. Creighton, E. Lai, R. J. Anderson, and I. Arslan, “Highly aligned, template-free growth and characterization of vertical GaN nanowires on sapphire by metal-organic chemical vapour deposition,” Nanotechnology17(23), 5773–5780 (2006). [CrossRef]
  12. A. A. Talin, G. T. Wang, E. Lai, and R. J. Anderson, “Correlation of growth temperature, photoluminescence, and resistivity in GaN nanowires,” Appl. Phys. Lett.92(9), 093105 (2008). [CrossRef]
  13. P. C. Upadhya, Q. M. Li, G. T. Wang, A. J. Fischer, A. J. Taylor, and R. P. Prasankumar, “The influence of defect states on non-equilibrium carrier dynamics in GaN nanowires,” Semicond. Sci. Technol.25(2), 024017 (2010). [CrossRef]
  14. C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology18(44), 445201 (2007). [CrossRef]
  15. Q. Li, J. J. Figiel, and G. T. Wang, “Dislocation density reduction in GaN by dislocation filtering through a self-assembled monolayer of silica microspheres,” Appl. Phys. Lett.94(23), 231105 (2009). [CrossRef]
  16. Y. D. Wang, S. J. Chua, S. Tripathy, M. S. Sander, P. Chen, and C. G. Fonstad, “High optical quality GaN nanopillar arrays,” Appl. Phys. Lett.86(7), 071917 (2005). [CrossRef]
  17. M. A. Miller, M. H. Crawford, A. A. Allerman, K. C. Cross, M. A. Banas, R. J. Shul, J. Stevens, and K. H. A. Bogart, “Smooth and vertical facet formation for AlGaN-based deep-UV laser diodes,” J. Electron. Mater.38(4), 533–537 (2009). [CrossRef]
  18. D. A. Stocker, E. F. Schubert, and J. M. Redwing, “Crystallographic wet chemical etching of GaN,” Appl. Phys. Lett.73(18), 2654–2656 (1998). [CrossRef]
  19. D. Zhuang and J. H. Edgar, “Wet etching of GaN, AIN, and SiC: a review,” Mater. Sci. Eng. Rep.48(1), 1–46 (2005). [CrossRef]
  20. S. Barbet, R. Aubry, M. A. di Forte-Poisson, J. C. Jacquet, D. Deresmes, T. Melin, and D. Theron, “Surface potential of n- and p-type GaN measured by Kelvin force microscopy,” Appl. Phys. Lett.93(21), 212107 (2008). [CrossRef]
  21. H. W. Choi, S. J. Chua, A. Raman, J. S. Pan, and A. T. S. Wee, “Plasma-induced damage to n-type GaN,” Appl. Phys. Lett.77(12), 1795–1797 (2000). [CrossRef]
  22. Y. K. Byeun, K. S. Han, and S. C. Choi, “Influence on the growth temperature for one-dimesional GaN nanostructures by halide vapor-phase epitaxy,” J. Ceram. Process. Res.6(3), 197–200 (2005).
  23. S. J. Chua, H. W. Choi, J. Zhang, and P. Li, “Vacancy effects on plasma-induced damage to n-type GaN,” Phys. Rev. B64(20), 205302 (2001). [CrossRef]
  24. H. W. Li, A. H. Chin, and M. K. Sunkara, “Direction-dependent homoepitaxial growth of GaN nanowires,” Adv. Mater. (Deerfield Beach Fla.)18(2), 216–220 (2006). [CrossRef]
  25. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1-xGaxN alloys,” Appl. Phys. Lett.80(25), 4741–4743 (2002). [CrossRef]
  26. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett.10(3), 1082–1087 (2010). [CrossRef] [PubMed]
  27. A. A. Talin, F. Léonard, B. S. Swartzentruber, X. Wang, and S. D. Hersee, “Unusually strong space-charge-limited current in thin wires,” Phys. Rev. Lett.101(7), 076802 (2008). [CrossRef] [PubMed]
  28. A. Armstrong, Q. Li, Y. Lin, A. A. Talin, and G. T. Wang, “GaN nanowire surface state observed using deep level optical spectroscopy,” Appl. Phys. Lett.96(16), 163106 (2010). [CrossRef]
  29. L. Baird, C. P. Ong, R. A. Cole, N. M. Haegel, A. A. Talin, Q. M. Li, and G. T. Wang, “Transport imaging for contact-free measurements of minority carrier diffusion in GaN, GaN/AlGaN, and GaN/InGaN core-shell nanowires,” Appl. Phys. Lett.98(13), 132104 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited