OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25559–25569

Dark-field optical tweezers for nanometrology of metallic nanoparticles

Kellie Pearce, Fan Wang, and Peter J. Reece  »View Author Affiliations

Optics Express, Vol. 19, Issue 25, pp. 25559-25569 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (979 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Applications of metallic nanoparticles are based on their strongly size-dependent optical properties. We present a method for combining optical tweezers with dark field microscopy that allows measurement of localised surface plasmon resonance (LSPR) spectra on single isolated nanoparticles without compromising the strength of the optical trap. Using this spectroscopic information in combination with measurements of trap stiffness and hydrodynamic drag, allows us to determine the dimensions of the trapped nanoparticles. A relationship is found between the measured diameters of the particles and the peak wavelengths of their spectra. Using this method we may also resolve complex spectra of particle aggregation and interactions within the tweezers.

© 2011 OSA

OCIS Codes
(160.4236) Materials : Nanomaterials
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: October 3, 2011
Revised Manuscript: November 10, 2011
Manuscript Accepted: November 11, 2011
Published: November 30, 2011

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics

Kellie Pearce, Fan Wang, and Peter J. Reece, "Dark-field optical tweezers for nanometrology of metallic nanoparticles," Opt. Express 19, 25559-25569 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Hajizadeh and S. S. Reihani, “Optimized optical trapping of gold nanoparticles,” Opt. Express 18(2), 551–559 (2010). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-18-2-551 . [CrossRef] [PubMed]
  2. M. Guffey and N. Scherer, “All-optical positioning of single and multiple Au nanoparticles on surfaces using optical trapping,” Proc. SPIE7762(1) (2010). URL http://dx.doi.org/10.1117/12.871881 . [CrossRef]
  3. A. F. Koenderink, “Plasmon nanoparticle array waveguides for single photon and single plasmon sources,” Nano Letters 9(12), 4228–4233 (2009). PMID: , http://pubs.acs.org/doi/pdf/10.1021/nl902439n , URL http://pubs.acs.org/doi/abs/10.1021/nl902439n . [PubMed]
  4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat Mater 7(6), 442–453 (2008). URL http://dx.doi.org/10.1038/nmat2162 . [CrossRef] [PubMed]
  5. R. P. Van Duyne, A. J. Haes, and A. D. McFarland, “Nanoparticle optics: fabrication, surface-enhanced spectroscopy, and sensing,” SPIE Proc.5223, 197–207 (2003). URL http://link.aip.org/link/?PSI/5223/197/1 . [CrossRef]
  6. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J Phys 4(1), 93 (2002). URL http://stacks.iop.org/1367-2630/4/i=1/a=393 . [CrossRef]
  7. T. Itoh, T. Uwada, T. Asahi, Y. Ozaki, and H. Masuhara, “Analysis of localized surface plasmon resonance by elastic light-scattering spectroscopy of individual Au nanoparticles for surface-enhanced Raman scattering,” Can J Anal Sci Spectros 52, 130–141 (2007).
  8. H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanopar-ticles and particle pairs,” App Phys Lett 80(10), 1826–1828 (2002). URL http://link.aip.org/link/?APL/80/1826/1 . [CrossRef]
  9. J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett 4(1), 115–118 (2004). http://pubs.acs.org/doi/pdf/10.1021/nl0349606 , URL http://pubs.acs.org/doi/abs/10.1021/nl0349606 . [CrossRef]
  10. F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Opt. Lett. 23(1), 7–9 (1998). URL http://ol.osa.org/abstract.cfm?URI=ol-23-1-7 . [CrossRef]
  11. M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J Nanophot 2, 021875 (pages 32) (2008). URL http://link.aip.org/link/?JNP/2/021875/1 . [CrossRef]
  12. L. Tong, V. D. Miljkovic, and M. Kall, “Optical manipulation of plasmonic nanoparticles using laser tweezers,” Proc. SPIE7762, 77,620O–8 (2010). URL http://link.aip.org/link/?PSI/7762/77620O/1 .
  13. Z. Jin-Hua, Q. Lian-Jie, Y. Kun, Z. Min-Cheng, and L. Yin-Mei, “Observing nanometre scale particles with light scattering for manipulation using optical tweezers,” Chin Phys Lett 25(1), 329 (2008). URL http://stacks.iop.org/0256-307X/25/i=1/a=088 . [CrossRef]
  14. P. J. Reece, W. J. Toe, F. Wang, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Characterization of semiconductor nanowires using optical tweezers,” Nano Lett 11(6), 2375–2381 (2011). URL http://pubs.acs.org/doi/abs/10.1021/nl200720m . [CrossRef] [PubMed]
  15. D. Selmeczi, P. H. Hagedorn, S. Mosler, N. B. Larsen, and H. Flyvbjerg, “Brownian motion after Einstein and Smoluchowski : some new applications and new experiments,” Acta Physica Polonica B 38(8), 2407–2431 (2007).
  16. K. C. Neuman and S. M. Block, “Optical trapping,” Rev Sci Instrum 75(9), 2787–2809 (2004). URL http://link.aip.org/link/?RSI/75/2787/1 . [CrossRef]
  17. V. Rudyak, A. Belkin, and E. Tomilina, “Force acting on a nanoparticle in a fluid,” Tech Phys Lett 34(1), 76–78 (2008-01-01). URL http://dx.doi.org/10.1134/S1063785008010239 .
  18. R. P. Carney, J. Y. Kim, H. Qian, R. Jin, H. Mehenni, F. Stellacci, and O. M. Bakr, “Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation,” Nat Commun 2 (2011). URL http://dx.doi.org/10.1038/ncomms1338 . [CrossRef] [PubMed]
  19. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu Rev Phys Chem 58(1), 267–297 (2007). URL http://www.annualreviews.org/doi/abs/10.1146/annurev.physchem.58.032806.104607 . [CrossRef]
  20. A. Haes, C. Haynes, A. McFarland, G. Schatz, R. V. Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bulletin 30, 368–375 (2005). URL http://dx.doi.org/doi:10.1557/mrs2005.100 . [CrossRef]
  21. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J Phys Chem B 103(40), 8410–8426 (1999). URL http://pubs.acs.org/doi/abs/10.1021/jp9917648 . [CrossRef]
  22. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J Phys Chem B 107(3), 668–677 (2003). URL http://pubs.acs.org/doi/abs/10.1021/jp026731y . [CrossRef]
  23. A. Tcherniak, J. W. Ha, S. Dominguez-Medina, L. S. Slaughter, and S. Link, “Probing a century old prediction one plasmonic particle at a time,” Nano Lett 10(4), 1398–1404 (2010). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/nl100199h . [PubMed]
  24. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J Phys Chem B 110(14), 7238–7248 (2006). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/jp057170o . [PubMed]
  25. C. Rayford, G. Schatz, and K. Shuford, “Optical properties of gold nanospheres,” Nanoscape 2, 27–33 (2005).
  26. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett 5(10), 1937–1942 (2005). URL http://pubs.acs.org/doi/abs/10.1021/nl051289r . [CrossRef] [PubMed]
  27. A. Kyrsting, P. M. Bendix, D. G. Stamou, and L. B. Oddershede, “Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release,” Nano Lett 11(2), 888–892 (2011). URL http://pubs.acs.org/doi/abs/10.1021/nl104280c . [CrossRef]
  28. S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: impending clinical impact,” Acc Chem Res 41(12), 1842–1851 (2008). http://pubs.acs.org/doi/pdf/10.1021/ar800150g , URL http://pubs.acs.org/doi/abs/10.1021/ar800150g . [CrossRef] [PubMed]
  29. L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett 10(1), 268–273 (2010). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/nl9034434 . [PubMed]
  30. M. Pelton, M. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, and N. F. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett. 31(13), 2075–2077 (2006). URL http://ol.osa.org/abstract.cfm?URI=ol-31-13-2075 . [CrossRef] [PubMed]
  31. C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett 8(9), 2998–3003 (2008). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/nl802053h . [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited