OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25623–25631

Miniature wavelength-selectable Raman laser: new insights for optimizing performance

Xiaoli Li, Helen M. Pask, Andrew J. Lee, Yujing Huo, James A. Piper, and David J. Spence  »View Author Affiliations

Optics Express, Vol. 19, Issue 25, pp. 25623-25631 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (942 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a miniature, wavelength-selectable crystalline Raman laser operating either in the yellow (588 nm) or lime (559 nm) selected simply by changing the temperature of an intracavity LBO crystal. Continuous-wave (CW) output powers are 320 mW and 660 mW respectively, corresponding to record diode-visible optical conversion efficiencies of 8.4% and 17% for such miniature devices. The complex laser behavior arising from interplay between nonlinear processes is studied experimentally and theoretically. We show that the interplay can lead to complete suppression of the first-Stokes field and that the phase matching conditions for maximum visible powers differ markedly for different length LBO crystals. By using threshold measurements, we calculate the round-trip resonator losses and show that crystal bulk losses dominate over other losses. As a consequence, Raman lasers utilizing shorter LBO crystals for intracavity frequency mixing can produce higher visible output power. These are new considerations for the optimum design of CW intracavity Raman lasers with visible output.

© 2011 OSA

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3550) Lasers and laser optics : Lasers, Raman
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.5650) Nonlinear optics : Raman effect

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 18, 2011
Revised Manuscript: November 10, 2011
Manuscript Accepted: November 21, 2011
Published: November 30, 2011

Xiaoli Li, Helen M. Pask, Andrew J. Lee, Yujing Huo, James A. Piper, and David J. Spence, "Miniature wavelength-selectable Raman laser: new insights for optimizing performance," Opt. Express 19, 25623-25631 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3–4), 121–158 (2008). [CrossRef]
  2. P. Cerný, H. Jelínková, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004). [CrossRef]
  3. L. Fan, Y. Fan, Y. Duan, Q. Wang, H. Wang, G. Jia, and C. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 94(4), 553–557 (2009). [CrossRef]
  4. L. Fan, Y.-X. Fan, Y.-Q. Li, H. Zhang, Q. Wang, J. Wang, and H.-T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO(4) Raman crystal,” Opt. Lett. 34(11), 1687–1689 (2009). [CrossRef] [PubMed]
  5. A. J. Lee, D. J. Spence, J. A. Piper, and H. M. Pask, “A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible,” Opt. Express 18(19), 20013–20018 (2010). [CrossRef] [PubMed]
  6. Y. Lü, X. Zhang, S. Li, J. Xia, W. Cheng, and Z. Xiong, “All-solid-state cw sodium D2 resonance radiation based on intracavity frequency-doubled self-Raman laser operation in double-end diffusion-bonded Nd3+:LuVO4 crystal,” Opt. Lett. 35(17), 2964–2966 (2010). [CrossRef] [PubMed]
  7. A. A. Kaminskii, K.-i. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1–3), 201–206 (2001). [CrossRef]
  8. Y. Sato and T. Taira, “Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid process,” IEEE J. Sel. Top. Quantum Electron. 11(3), 613–620 (2005). [CrossRef]
  9. X. Li, A. J. Lee, H. M. Pask, J. A. Piper, and Y. Huo, “Efficient, miniature, cw yellow source based on an intracavity frequency-doubled Nd:YVO4 self-Raman laser,” Opt. Lett. 36(8), 1428–1430 (2011). [CrossRef] [PubMed]
  10. W. Koechner, Solid State Laser Engineering, 4th ed. (Springer-Verlag, 1996), Chap. 10.1.
  11. A. V. Smith, “SNLO nonlinear optics code,” AS-Photonics, Albuquerque, NM, http://www.as-photonics.com/SNLO.html
  12. K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30(12), 2950–2952 (1994). [CrossRef]
  13. D. J. Spence, P. Dekker, and H. M. Pask, “Modelling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007). [CrossRef]
  14. J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li 3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988). [CrossRef]
  15. D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966). [CrossRef]
  16. R. Smith, “Theory of intracavity optical second-harmonic generation,” IEEE J. Quantum Electron. 6(4), 215–223 (1970). [CrossRef]
  17. K. Koch and G. T. Moore, “Raman oscillation with intracavity sum-frequency generation,” IEEE J. Quantum Electron. 35(1), 72–78 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited