OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25672–25684

ASE in thin disk lasers: theory and experiment

P. Peterson, A. Gavrielides, T. C. Newell, N. Vretenar, and W. P. Latham  »View Author Affiliations

Optics Express, Vol. 19, Issue 25, pp. 25672-25684 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (888 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We derive equations for the ASE intensity, decay time, and heat load. The crux of our development is frequency integration over the gain lineshape followed by a spatial integration over the emitters. These integrations result in a gain length that is determined from experiment. We measure the gain as a function of incident pump power for a multi-pass pumped Yb:YAG disk doped at 9.8 at.% with an anti-ASE cap. The incident pump powers are up to 3kW. Our fit to the measured gain is within 10% of the measured gain up to pump powers where the gain starts to flatten out and roll over. In this comparison we extract the gain length that turns out to be 43% of the pump spot size of 7mm.

© 2011 OSA

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 31, 2011
Revised Manuscript: October 21, 2011
Manuscript Accepted: October 23, 2011
Published: December 1, 2011

P. Peterson, A. Gavrielides, T. C. Newell, N. Vretenar, and W. P. Latham, "ASE in thin disk lasers: theory and experiment," Opt. Express 19, 25672-25684 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. J. Linford, E. R. Peressini, W. R. Sooy, and M. L. Spaeth, “Very long lasers,” Appl. Opt. 13(2), 379–390 (1974). [CrossRef] [PubMed]
  2. D. D. Lowenthal and J. M. Eagleston, “ASE effects in small aspect ratio laser oscillators and amplifiers with nonsaturable absorption,” IEEE J. Quantum Electron. 22(8), 1165–1173 (1986). [CrossRef]
  3. N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35(1), 101–109 (1999). [CrossRef]
  4. J. Speiser, “Scaling of thin-disk lasers-influence of amplified spontaneous emission,” J. Opt. Soc. Am. B 26(1), 26–35 (2009). [CrossRef]
  5. D. Kouznetsov, J.-F. Bisson, J. Dong, and K.-I. Ueda, “Surface loss limit of the power scaling of a thin-disk laser,” J. Opt. Soc. Am. 23(6), 1074–1082 (2006). [CrossRef]
  6. D. Kouznetsov and J.-F. Bisson, “Role of undoped cap in the scaling of thin-disk lasers,” J. Opt. Soc. Am. B 25(3), 338–345 (2008). [CrossRef]
  7. D. Kouznetsov, J.-F. Bisson, and K. Ueda, “Scaling laws of disk lasers,” Opt. Mater. 31(5), 754–759 (2009). [CrossRef]
  8. K. Contag, U. Brauch, S. Erhard, A. Giesen, I. Johannsen, M. Karszewski, and S. A. V. Christian, “Simulations of the lasing properties of a thin disk laser combining high ouptut power with good beam quality,” in Modeling and Simulation of High Power Laser Systems IV, U. O. Farrukh, S Basu,eds. Proc SPIE 2989, p. 23 (1991).
  9. K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hūgel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb : YAG laser,” Quantum Electron. 29(8), 697–703 (1999). [CrossRef]
  10. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers:results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007). [CrossRef]
  11. J. Speiser, “Thin disk laser – energy scaling,” Laser Phys. 19(2), 274–280 (2009). [CrossRef]
  12. J. Speiser, “Scaling of thin-disk lasers – influence of amplified spontaneous emission,” J. Opt. Soc. Am. B 26(1), 26–35 (2009). [CrossRef]
  13. N. Vretenar and T. Carson, T. C. Newell, P. Peterson, “Thermal and stress characterization of various thin disk laser configurations at room temperature,” Solid State Lasers XX: Technology and Devices, Proc Vol. 7912 (2011)
  14. N. Vretenar, “Room temperature and cryogenic Yb:YAG thin disk laser: single crystal and ceramic.” PhD dissertation, Center for High Technology Materials, University of New Mexico (2011).
  15. A. Antoginini, K. Schumann, F. D. Amaro, F. Ç. Birben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelilcato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Ç. Mulhauser, T. Nebel, F. Ç. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk YbYAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009). [CrossRef]
  16. D. Albach, J.-C. Chanteloup, and G. Touzé, “Influence of ASE on the gain distribution in large size, high gain Yb3+:YAG slabs,” Opt. Express 17(5), 3792–3801 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited