OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25696–25711

Theoretical investigations of quantum-dot semiconductor optical amplifier enabled intensity modulation of adaptively modulated optical OFDM signals in IMDD PON systems

A. Hamié, M. Hamze, J. L. Wei, A. Sharaiha, and J. M. Tang  »View Author Affiliations


Optics Express, Vol. 19, Issue 25, pp. 25696-25711 (2011)
http://dx.doi.org/10.1364/OE.19.025696


View Full Text Article

Enhanced HTML    Acrobat PDF (1329 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Extensive explorations are undertaken, for the first time, of the feasibility of utilizing quantum-dot semiconductor optical amplifier intensity modulators (QD-SOA-IMs) in cost-sensitive intensity-modulation and direct-detection (IMDD) passive optical network (PON) systems based on adaptively modulated optical orthogonal frequency division multiplexing (AMOOFDM). A theoretical QD-SOA-IM model is developed, based on which optimum QD-SOA-IM operating conditions are identified together with major physical mechanism considerably affecting the system performance. It is shown that, in comparison with previously reported SOA-IMs in similar transmission systems, QD-SOA-IMs cannot only considerably improve the AMOOFDM transmission performance but also broaden the dynamic range of optimum operating conditions. In particular, for achieving signal bit rates of >30Gb/s over >60km single mode fiber (SMF), QD-SOA-IMs offer a 10dB reduction in CW optical input powers injected into the modulators. In addition, QD-SOA-IMs can also be employed to compensate the chromatic dispersion effect.

© 2011 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(060.4080) Fiber optics and optical communications : Modulation
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 12, 2011
Revised Manuscript: October 16, 2011
Manuscript Accepted: October 25, 2011
Published: December 1, 2011

Citation
A. Hamié, M. Hamze, J. L. Wei, A. Sharaiha, and J. M. Tang, "Theoretical investigations of quantum-dot semiconductor optical amplifier enabled intensity modulation of adaptively modulated optical OFDM signals in IMDD PON systems," Opt. Express 19, 25696-25711 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-25-25696


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Kim, C. Meuer, D. Bimberg, and G. Eisenstein, “Numerical simulation of temporal and spectral variation of gain and phase recovery in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron.46(3), 405–413 (2010). [CrossRef]
  2. T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett.13(6), 541–543 (2001). [CrossRef]
  3. T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely-high penalty-free output power of 23 dBm achieved with quantum-dot,” IEEE Photon. Technol. Lett.17(8), 1614–1616 (2005). [CrossRef]
  4. A. Rostami, H. B. A. Nejad, R. M. Qartavol, and H. R. Saghai, “Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron.46(3), 354–360 (2010). [CrossRef]
  5. M. Sugawara, T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and H. Ishikawa, “Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gb/s and a new scheme of 3R regenerators,” Meas. Sci. Technol.13(11), 1683–1691 (2002). [CrossRef]
  6. O. Qasaimeh, “Effect of inhomogeneous line broadening on gain and differential gain of quantum dot lasers,” IEEE Trans. Electron. Dev.50(7), 1575–1581 (2003). [CrossRef]
  7. Elmar Trojer, Stefan Dahlfort, David Hood, and Hans Mickelsson, “Current and next-generation PONS: A technical overview of present and future PON technology,” www.ericsson.com/ericsson/corpinfo/publications/review/2008_02/files/3_PON.pdf
  8. J. L. Wei, A. Hamié, R. P. Giddings, and J. M. Tang, “Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems,” J. Lightwave Technol.27(16), 3678–3689 (2009). [CrossRef]
  9. J. L. Wei, X. L. Yang, R. P. Giddings, and J. M. Tang, “Colourless adaptively modulated optical OFDM transmitters using SOAs as intensity modulators,” Opt. Express17(11), 9012–9027 (2009). [CrossRef] [PubMed]
  10. J. L. Wei, A. Hamié, R. P. Gidding, E. Hugues-Salas, X. Zheng, S. Mansoor, and J. M. Tang, “Adaptively modulated optical OFDM modems utilizing RSOAs as intensity modulators in IMDD SMF transmission systems,” Opt. Express18(8), 8556–8573 (2010). [CrossRef] [PubMed]
  11. J. M. Tang, P. M. Lane, and K. A. Shore, “High speed transmission of adaptively modulated optical OFDM signals over multimode fibers using directly modulated DFBs,” J. Lightwave Technol.24(1), 429–441 (2006). [CrossRef]
  12. X. Q. Jin, J. M. Tang, P. S. Spencer, and K. A. Shore, “Optimization of adaptively modulated optical OFDM modems for multimode fiberbased local area networks[Invited],” J. Opt. Netw.7(3), 198–214 (2008). [CrossRef]
  13. J. M. Tang and K. A. Shore, “30 Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fibre links without optical amplification and dispersion compensation,” J. Lightwave Technol.24(6), 2318–2327 (2006). [CrossRef]
  14. X. Zheng, J. L. Wei, and J. M. Tang, “Transmission performance of adaptively modulated optical OFDM modems using subcarrier modulation over SMF IMDD links for access and metropolitan area networks,” Opt. Express16(25), 20427–20440 (2008). [CrossRef] [PubMed]
  15. J. L. Wei, X. Q. Jin, and J. M. Tang, “The influence of directly modulated DFB lasers on the transmission performance of carrier suppressed single sideband optical OFDM signals over IMDD SMF systems,” J. Lightwave Technol.27(13), 2412–2419 (2009). [CrossRef]
  16. M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B69(23), 235332 (2004). [CrossRef]
  17. O. Qasaimeh, “Novel closed form for multiple-state quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron.44(7), 652–657 (2008). [CrossRef]
  18. O. Qasaimeh, “Optical gain and saturation characteristics of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron.39(6), 793–798 (2003). [CrossRef]
  19. H. Sun, Q. Wang, H. Dong, and N. K. Dutta, “XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zehnder interferometer,” Opt. Express13(6), 1892–1899 (2005). [CrossRef] [PubMed]
  20. H. Sun, Q. Wang, H. Dong, and N. K. Dutta, “All-optical logic performance of quantum-dot semiconductor amplifier-based devices,” Microw. Opt. Technol. Lett.48(1), 29–35 (2006). [CrossRef]
  21. T. W. Berg, J. Mork, and J. M. Hvam, “Gain dynamics and saturation in semiconductor quantum dot amplifiers,” New J. Phys.6, 178 (2004). [CrossRef]
  22. G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron.25(11), 2297–2306 (1989). [CrossRef]
  23. A. Mecozzi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron.3(5), 1190–1207 (1997). [CrossRef]
  24. N. A. Olsson, “Ligthwave systems with optical amplifiers,” J. Lightwave Technol.7(7), 1071–1082 (1989). [CrossRef]
  25. G. P. Agrawal, Fibre-Optic Communication Systems, 2nd ed. (Hoboken, NJ: Wiley, 1997).
  26. J. M. Tang and K. A. Shore, “Maximizing the transmission performance of adaptively modulated optical OFDM signals in multimode- fiber links by optimizing analog-to-digital converters,” J. Lightwave Technol.25(3), 787–798 (2007). [CrossRef]
  27. T. C. Newell, D. J. Bossert, A. Stinz, B. Fuchs, K. J. Malloy, and L. F Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett.11(12), 1527–1529 (1999). [CrossRef]
  28. B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett.41(6), 323–324 (2005). [CrossRef]
  29. G. Sun, J. B. Khurgin, and R. A. Soref, “Design of quantum-dot lasers with an indirect bandgap short-period superlattice for reducing the linewidth enhancement factor,” IEEE Photon. Technol. Lett.16(10), 2203–2205 (2004). [CrossRef]
  30. S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth enhancement factor in InGaAs quantum-dot amplifiers,” IEEE J. Quantum Electron.40(10), 1423–1429 (2004). [CrossRef]
  31. X. Li and G. Li, “Static Gain, Optical Modulation Response, and Nonlinear Phase Noise in Saturated Quantum-Dot Semiconductor Optical Amplifiers,” IEEE J. Quantum Electron.45(5), 499–505 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited