OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25729–25740

Dielectric particle and void resonators for thin film solar cell textures

Sander A. Mann, Richard R. Grote, Richard M. Osgood, Jr., and Jon A. Schuller  »View Author Affiliations


Optics Express, Vol. 19, Issue 25, pp. 25729-25740 (2011)
http://dx.doi.org/10.1364/OE.19.025729


View Full Text Article

Enhanced HTML    Acrobat PDF (1479 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Abstract: Using Mie theory and Rigorous Coupled Wave Analysis (RCWA) we compare the properties of dielectric particle and void resonators. We show that void resonators—low refractive index inclusions within a high index embedding medium—exhibit larger bandwidth resonances, reduced peak scattering intensity, different polarization anisotropies, and enhanced forward scattering when compared to their particle (high index inclusions in a low index medium) counterparts. We evaluate amorphous silicon solar cell textures comprising either arrays of voids or particles. Both designs support substantial absorption enhancements (up to 45%) relative to a flat cell with anti-reflection coating, over a large range of cell thicknesses. By leveraging void-based textures 90% of above-bandgap photons are absorbed in cells with maximal vertical dimension of 100 nm.

© 2011 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(140.4780) Lasers and laser optics : Optical resonators
(290.4020) Scattering : Mie theory
(350.6050) Other areas of optics : Solar energy
(050.6624) Diffraction and gratings : Subwavelength structures
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Solar Energy

History
Original Manuscript: September 30, 2011
Revised Manuscript: November 17, 2011
Manuscript Accepted: November 17, 2011
Published: December 1, 2011

Citation
Sander A. Mann, Richard R. Grote, Richard M. Osgood, and Jon A. Schuller, "Dielectric particle and void resonators for thin film solar cell textures," Opt. Express 19, 25729-25740 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-25-25729


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Campbell, “Enhancement of light absorption from randomizing and geometric textures,” J. Opt. Soc. Am. B10(12), 2410–2415 (1993). [CrossRef]
  2. M. A. Green, “Two new efficient crystalline silicon light-trapping textures,” Prog. Photovolt. Res. Appl.7(4), 317–320 (1999). [CrossRef]
  3. O. Isabella, K. Jager, J. Krč, and M. Zeman, “Light scattering properties of surface-textured substrates for thin-film solar cells,” Proceedings of the 23rd European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC), (2008), Session 3AV 1, pp. 476–481.
  4. J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy77(6), 917–930 (2004). [CrossRef]
  5. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  6. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express18(S2Suppl 2), A237–A245 (2010). [CrossRef] [PubMed]
  7. N. C. Panoiu and R. M. Osgood., “Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes,” Opt. Lett.32(19), 2825–2827 (2007). [CrossRef] [PubMed]
  8. Y. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: Metallic or dielectric nanoparticles?” Appl. Phys. Lett.96(7), 073111 (2010). [CrossRef]
  9. J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. (Deerfield Beach Fla.)23(10), 1272–1276 (2011). [CrossRef] [PubMed]
  10. M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells - a numerical study,” Phys. Status Solidi205(12), 2777–2795 (2008). [CrossRef]
  11. L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010). [CrossRef] [PubMed]
  12. S. Bandiera, D. Jacob, T. Muller, F. Marquier, M. Laroche, and J. J. Greffet, “Enhanced absorption by nanostructured silicon,” Appl. Phys. Lett.93(19), 193103 (2008). [CrossRef]
  13. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light, (Princeton Univ Press, 2008).
  14. F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett.93(19), 197401 (2004). [CrossRef] [PubMed]
  15. Q. G. Du, C. H. Kam, H. V. Demir, H. Y. Yu, and X. W. Sun, “Enhanced optical absorption in nanopatterned silicon thin films with a nano-cone-hole structure for photovoltaic applications,” Opt. Lett.36(9), 1713–1715 (2011). [CrossRef] [PubMed]
  16. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010). [CrossRef] [PubMed]
  17. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics2(5), 299–301 (2008). [CrossRef]
  18. N. N. Lal, B. F. Soares, J. K. Sinha, F. Huang, S. Mahajan, P. N. Bartlett, N. C. Greenham, and J. J. Baumberg, “Enhancing solar cells with localized plasmons in nanovoids,” Opt. Express19(12), 11256–11263 (2011). [CrossRef] [PubMed]
  19. T. K. Gaylord, W. E. Baird, and M. G. Moharam, “Zero-reflectivity high spatial-frequency rectangular-groove dielectric surface-relief gratings,” Appl. Opt.25(24), 4562–4567 (1986). [CrossRef] [PubMed]
  20. M. E. Motamedi, W. H. Southwell, and W. J. Gunning, “Antireflection surfaces in silicon using binary optics technology,” Appl. Opt.31(22), 4371–4376 (1992). [CrossRef] [PubMed]
  21. A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells54(1-4), 333–342 (1998). [CrossRef]
  22. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Inter-Science, 1998).
  23. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express19(6), 4815–4826 (2011). [CrossRef] [PubMed]
  24. R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophotonics5(1), 053512 (2011). [CrossRef]
  25. J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express17(26), 24084–24095 (2009). [CrossRef] [PubMed]
  26. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008). [CrossRef]
  27. A.B. Evlyukhin, C. Reinhardt, A. Seidel, B.S. Luk’yanchuk, and B.N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. Lett. B82, 045404 (2010).
  28. RSoft Design Group, Inc., http://www.rsoftdesign.com .
  29. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A12(5), 1068–1076 (1995). [CrossRef]
  30. The algorithm can be found at http://www.lri.fr/~hansen/cmaes_inmatlab.html#python .
  31. J. Leng, J. Opsal, H. Chu, M. Senko, and D. E. Aspnes, “Analytic representations of the dielectric functions of materials for device and structural modeling,” Thin Solid Films313–314(1-2), 132–136 (1998). [CrossRef]
  32. J. Shainline, S. Elston, Z. Liu, G. Fernandes, R. Zia, and J. Xu, “Subwavelength silicon microcavities,” Opt. Express17(25), 23323–23331 (2009). [CrossRef] [PubMed]
  33. H. C. van der Hulst, Light scattering by Small Particles (Dover, 1981).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited