OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25763–25772

Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB

Moritz Mehmet, Stefan Ast, Tobias Eberle, Sebastian Steinlechner, Henning Vahlbruch, and Roman Schnabel  »View Author Affiliations

Optics Express, Vol. 19, Issue 25, pp. 25763-25772 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (995 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Continuous-wave squeezed states of light at the wavelength of 1550 nm have recently been demonstrated, but so far the obtained factors of noise suppression still lag behind today’s best squeezing values demonstrated at 1064 nm. Here we report on the realization of a half-monolithic nonlinear resonator based on periodically-poled potassium titanyl phosphate which enabled the direct detection of up to 12.3 dB of squeezing at 5 MHz. Squeezing was observed down to a frequency of 2 kHz which is well within the detection band of gravitational wave interferometers. Our results suggest that a long-term stable 1550 nm squeezed light source can be realized with strong squeezing covering the entire detection band of a 3rd generation gravitational-wave detector such as the Einstein Telescope.

© 2011 OSA

OCIS Codes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(270.0270) Quantum optics : Quantum optics
(270.6570) Quantum optics : Squeezed states

ToC Category:
Quantum Optics

Original Manuscript: October 19, 2011
Revised Manuscript: November 21, 2011
Manuscript Accepted: November 21, 2011
Published: December 1, 2011

Moritz Mehmet, Stefan Ast, Tobias Eberle, Sebastian Steinlechner, Henning Vahlbruch, and Roman Schnabel, "Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB," Opt. Express 19, 25763-25772 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D 23, 1693 (1981). [CrossRef]
  2. M. Mehmet, H. Vahlbruch, N. Lastzka, K. Danzmann, and R. Schnabel, “Observation of squeezed states with strong photon-number oscillations,” Phys. Rev. A 81, 013814 (2010). [CrossRef]
  3. T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010). [CrossRef] [PubMed]
  4. H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the gravitational-wave detection band,” Phys. Rev. Lett. 97, 011101 (2006). [CrossRef] [PubMed]
  5. H. Vahlbruch, S. Chelkowski, K. Danzmann, and R. Schnabel, “Quantum engineering of squeezed states for quantum communication and metrology,” New. J. Phys. 9, 371 (2007). [CrossRef]
  6. H. Vahlbruch, A. Khalaidovski, N. Lastzka, Ch. Gräf, K. Danzmann, and R. Schnabel, “The GEO 600 squeezed light source,” Class. Quantum Grav. 27, 084027 (2010). [CrossRef]
  7. H. Grote for the LIGO Scientific Collaboration, The status of GEO 600, Class. Quantum Grav. 25, 114043 (2008).
  8. The LIGO Scientific Collaboration, “A gravitational wave observatory operating beyond the quantum shot-noise limit,” Nat. Phys. (to be published). [PubMed]
  9. The Virgo Collaboration, Advanced Virgo Baseline Design, Virgo Technical Report VIR-0027A-09 (2009), https://tds.ego-gw.it/ql/?c=6589 .
  10. G. M. Harry (for the LIGO Scientific Collaboration), Advanced LIGO: the next generation of gravitational wave detectors, Class. Quantum Grav. 27, 084006 (2010). [CrossRef]
  11. R. Schnabel, N. Mavalvala, David E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun. 1121 (2010). [CrossRef] [PubMed]
  12. The ET Science Team, “Einstein gravitational wave Telescope (ET) conceptual design study,” ET-0106C-10 (2011), https://tds.ego-gw.it/ql/?c=7954 .
  13. S. Rowan, J. Hough, and D. R. M. Crooks, “Thermal noise and material issues for gravitational wave detectors,” Phys. Lett. A 34725–32 (2005). [CrossRef]
  14. R. Schnabel, M. Britzger, F. Brückner, O. Burmeister, K. Danzmann, J. Dück, T. Eberle, D. Friedrich, H. Lück, M. Mehmet, R. Nawrodt, S. Steinlechner, and B. Willke, “Building blocks for future detectors: Silicon test masses and 1550 nm laser light,” J. Phys.: Conf. Ser. 228, 012029 (2010). [CrossRef]
  15. M. Mehmet, S. Steinlechner, T. Eberle, H. Vahlbruch, A. Thring, K. Danzmann, and R. Schnabel, “Observation of cw squeezed light at 1550 nm,” Opt. Lett. 34, 1060–1062 (2009). [CrossRef] [PubMed]
  16. M. Mehmet, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Demonstration of a quantum-enhanced fiber Sagnac interferometer,” Opt. Lett. 35, 1665–1667 (2009). [CrossRef]
  17. T. Eberle, V. Händchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source,” Phys. Rev. A 83, 052329 (2011). [CrossRef]
  18. C. C. Gerry and P. L. Knight, Introductory Quantum Optics (Cambridge Univ. Press, Cambridge, 2004). [CrossRef]
  19. T. Aoki, G. Takahashi, and A. Furusawa, “Squeezing at 946 nm with periodically poled KTiOPO4,” Opt. Express 14, 6930–6935 (2006). [CrossRef] [PubMed]
  20. W. P. Bowen, R. Schnabel, N. Treps, H.-A. Bachor, and P. K. Lam, “Recovery of continuous wave squeezing at low frequencies,” J. Opt. B: Quantum Semiclassical Opt. 4, 421 (2002). [CrossRef]
  21. K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett. 93, 161105 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited