OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25780–25785

Features of randomized electric-field assisted domain inversion in lithium tantalate

Salvatore Stivala, Fabrizio Buccheri, Luciano Curcio, Roberto L. Oliveri, Alessandro C. Busacca, and Gaetano Assanto  »View Author Affiliations

Optics Express, Vol. 19, Issue 25, pp. 25780-25785 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (985 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on bulk and guided-wave second-harmonic generation via random Quasi-Phase-Matching in Lithium Tantalate. By acquiring the far-field profiles at several wavelengths, we extract statistical information on the distribution of the quadratic nonlinearity as well as its average period, both at the surface and in the bulk of the sample. By investigating the distribution in the two regions we demonstrate a non-invasive approach to the study of poling dynamics.

© 2011 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.2620) Nonlinear optics : Harmonic generation and mixing

ToC Category:
Nonlinear Optics

Original Manuscript: September 16, 2011
Revised Manuscript: October 21, 2011
Manuscript Accepted: October 24, 2011
Published: December 2, 2011

Salvatore Stivala, Fabrizio Buccheri, Luciano Curcio, Roberto L. Oliveri, Alessandro C. Busacca, and Gaetano Assanto, "Features of randomized electric-field assisted domain inversion in lithium tantalate," Opt. Express 19, 25780-25785 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992). [CrossRef]
  2. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second harmonic generation,” Appl. Phys. Lett.62(5), 435–436 (1993). [CrossRef]
  3. A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, “First order quasi-phase matched blue light generation in surface poled Ti-indiffused lithium niobate waveguide,” Appl. Phys. Lett.84(22), 4430–4432 (2004). [CrossRef]
  4. K. Gallo, C. Codemard, C. B. E. Gawith, J. Nilsson, P. G. R. Smith, N. G. R. Broderick, and D. J. Richardson, “Guided-wave second-harmonic generation in a LiNbO3 nonlinear photonic crystal,” Opt. Lett.31(9), 1232–1234 (2006). [CrossRef] [PubMed]
  5. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett.17(1), 28–30 (1992). [CrossRef] [PubMed]
  6. G. I. Stegeman, M. Sheik-Bahae, E. Van Stryland, and G. Assanto, “Large nonlinear phase shifts in second-order nonlinear-optical processes,” Opt. Lett.18(1), 13–15 (1993). [CrossRef] [PubMed]
  7. G. Assanto, I. Torelli, and S. Trillo, “All-optical processing by means of vectorial interactions in second-order cascading: novel approaches,” Opt. Lett.19(21), 1720–1722 (1994). [CrossRef] [PubMed]
  8. D. J. Hagan, Z. Wang, G. Stegeman, E. W. Van Stryland, M. Sheik-Bahae, and G. Assanto, “Phase-controlled transistor action by cascading of second-order nonlinearities in KTP,” Opt. Lett.19(17), 1305–1307 (1994). [CrossRef] [PubMed]
  9. G. Assanto, “Transistor action through nonlinear cascading in Type II interactions,” Opt. Lett.20(15), 1595–1597 (1995). [CrossRef] [PubMed]
  10. G. Assanto, Z. Wang, D. J. Hagan, and E. W. Van Stryland, “All-optical Modulation via Nonlinear Cascading in Type II Second Harmonic Generation,” Appl. Phys. Lett.67(15), 2120–2122 (1995). [CrossRef]
  11. G. Assanto, G. I. Stegeman, M. Sheik-Bahae, and E. W. Van Stryland, “Coherent interactions for all-optical signal processing via quadratic nonlinearities,” IEEE J. Quantum Electron.31(4), 673–681 (1995). [CrossRef]
  12. C. Conti, S. Trillo, and G. Assanto, “Doubly resonant Bragg simultons via second-harmonic generation,” Phys. Rev. Lett.78(12), 2341–2344 (1997). [CrossRef]
  13. Y. Baek, R. Schiek, G. Stegeman, G. Assanto, and W. Sohler, “All-optical Mode Mixer Spatial Switch Based on Cascading in Lithium Niobate,” Appl. Phys. Lett.72(26), 3405–3407 (1998). [CrossRef]
  14. K. Gallo, P. Baldi, M. De Micheli, D. B. Ostrowsky, and G. Assanto, “Cascading phase shift and multivalued response in counterpropagating frequency-nondegenerate parametric amplifiers,” Opt. Lett.25(13), 966–968 (2000). [CrossRef] [PubMed]
  15. G. Assanto and G. I. Stegeman, “Simple physics of quadratic spatial solitons,” Opt. Express10(9), 388–396 (2002). [PubMed]
  16. G. Leo, A. Amoroso, L. Colace, G. Assanto, R. V. Roussev, and M. M. Fejer, “Low-threshold spatial solitons in reverse-proton-exchanged periodically poled lithium niobate waveguides,” Opt. Lett.29(15), 1778–1780 (2004). [CrossRef] [PubMed]
  17. K. Gallo and G. Assanto, “Spatial solitons in χ(2) planar photonic crystals,” Opt. Lett.32(21), 3149–3151 (2007). [CrossRef] [PubMed]
  18. K. Gallo, A. Pasquazi, S. Stivala, and G. Assanto, “Parametric solitons in two-dimensional lattices of purely nonlinear origin,” Phys. Rev. Lett.100(5), 053901 (2008). [CrossRef] [PubMed]
  19. K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient Wavelength Shifting Over the Erbium Amplifier Bandwidth Via Cascaded Second Order Processes in Lithium Niobate Waveguides,” Appl. Phys. Lett.71(8), 1020–1022 (1997). [CrossRef]
  20. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” Photon. Technol. Lett.11(6), 653–655 (1999). [CrossRef]
  21. K. Gallo and G. Assanto, “Analysis of Lithium Niobate all-optical wavelength shifters for the third spectral window,” J. Opt. Soc. Am. B16(5), 741–753 (1999). [CrossRef]
  22. K. Gallo and G. Assanto, “All-optical diode based on second-harmonic generation in an asymmetric waveguide,” J. Opt. Soc. Am. B16(2), 267–269 (1999). [CrossRef]
  23. K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically-poled Lithium Niobate waveguide,” Appl. Phys. Lett.79(3), 314–316 (2001). [CrossRef]
  24. X. Gu, M. Makarov, Y. J. Ding, J. B. Khurgin, and W. P. Risk, “Backward second-harmonic and third-harmonic generation in a periodically poled potassium titanyl phosphate waveguide,” Opt. Lett.24(3), 127–129 (1999). [CrossRef] [PubMed]
  25. X. Mu, I. B. Zotova, Y. J. Ding, and W. P. Risk, “Backward second-harmonic generation in submicron-period ion-exchanged KTP waveguide,” Opt. Commun.181(1-3), 153–159 (2000). [CrossRef]
  26. C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics1(8), 459–462 (2007). [CrossRef]
  27. A. C. Busacca, E. D’Asaro, A. Pasquazi, S. Stivala, and G. Assanto, “Ultraviolet generation in periodically poled lithium tantalate waveguides,” Appl. Phys. Lett.93(12), 121117 (2008). [CrossRef]
  28. S. Stivala, A. C. Busacca, A. Pasquazi, R. L. Oliveri, R. Morandotti, and G. Assanto, “Random quasi-phase-matched second-harmonic generation in periodically poled lithium tantalate,” Opt. Lett.35(3), 363–365 (2010). [CrossRef] [PubMed]
  29. A. Pasquazi, A. C. Busacca, S. Stivala, R. Morandotti, and G. Assanto, “Nonlinear Disorder Mapping Through Three-Wave Mixing,” IEEE Photon. J.2(1), 18–28 (2010). [CrossRef]
  30. J. S. Pelc, C. R. Phillips, D. Chang, C. Langrock, and M. M. Fejer, “Efficiency pedestal in quasi-phase-matching devices with random duty-cycle errors,” Opt. Lett.36(6), 864–866 (2011). [CrossRef] [PubMed]
  31. F. Kalkum, H. A. Eggert, T. Jungk, and K. Buse, “A stochastic model for periodic domain structuring in ferroelectric crystals,” J. Appl. Phys.102(1), 014104 (2007). [CrossRef]
  32. Y. F. Chen, K. W. Su, T. H. Lu, and K. F. Huang, “Manifestation of weak localization and long-range correlation in disordered wave functions from conical second harmonic generation,” Phys. Rev. Lett.96(3), 033905 (2006). [CrossRef] [PubMed]
  33. R. Fischer, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Yu. S. Kivshar, “Broadband femtosecond frequency doubling in random media,” Appl. Phys. Lett.89(19), 191105 (2006). [CrossRef]
  34. M. Horowitz, A. Bekker, and B. Fischer, “Broadband second-harmonic generation in SrxBa1-xNb2O6 by spread spectrum phase matching with controllable domain gratings,” Appl. Phys. Lett.62(21), 2619–2621 (1993). [CrossRef]
  35. S. Kase and K. Ohi, “Optical absorption and interband Faraday rotation in LiTaO3 and LiNbO3,” Ferroelectrics8(1), 419–420 (1974). [CrossRef]
  36. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B14(9), 2268–2294 (1997). [CrossRef]
  37. M. de Micheli, D. B. Ostrowsky, J. P. Barety, C. Canali, A. Carnera, G. Mazzi, and M. Papuchon, “Crystalline and optical quality of proton exchanged waveguides,” J. Lightwave Technol.4(7), 743–745 (1986). [CrossRef]
  38. A. C. Busacca, S. Stivala, L. Curcio, P. Minzioni, G. Nava, I. Cristiani, and G. Assanto, “Soft proton exchanged channel waveguides in congruent lithium tantalate for frequency doubling,” Opt. Express18(25), 25967–25972 (2010). [CrossRef] [PubMed]
  39. G. Nava, P. Minzioni, I. Cristiani, A. C. Busacca, L. Curcio, S. Stivala, and G. Assanto, “Integrated frequency shifter in periodically poled lithium tantalate waveguide,” Electron. Lett.46(25), 1686–1687 (2010). [CrossRef]
  40. I. E. Barry, G. W. Ross, P. G. R. Smith, R. W. Eason, and G. Cook, “Microstructuring of lithium niobate using differential etch-rate between inverted and non-inverted ferroelectric domains,” Mater. Lett.37(4-5), 246–254 (1998). [CrossRef]
  41. J.-P. Meyn and M. M. Fejer, “Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate,” Opt. Lett.22(16), 1214–1216 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited