OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25786–25791

Nanozeolites doped photopolymer layers with reduced shrinkage

Mohesh Moothanchery, Izabela Naydenova, Svetlana Mintova, and Vincent Toal  »View Author Affiliations


Optics Express, Vol. 19, Issue 25, pp. 25786-25791 (2011)
http://dx.doi.org/10.1364/OE.19.025786


View Full Text Article

Enhanced HTML    Acrobat PDF (888 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An acrylamide based photopolymer doped with pure silica MFI-type zeolite (silicalite-1) nanoparticles has been characterized for holographic recording purposes. The concentrations of the silicalite-1 nanoparticles in the photopolymer layers were 1, 2.5, 5 and 7.5 wt. %. The inclusion of silicalite-1 nanoparticle in the photopolymer has resulted in an increase of the diffraction efficiency by up to 40%, and decrease of the shrinkage from 1.32% to 0.57%. The best results were obtained in layers doped with 5 wt. % silicalite-1 nanoparticles.

© 2011 OSA

OCIS Codes
(090.0090) Holography : Holography
(090.7330) Holography : Volume gratings
(160.4670) Materials : Optical materials
(160.5470) Materials : Polymers
(160.5335) Materials : Photosensitive materials

ToC Category:
Holography

History
Original Manuscript: June 24, 2011
Revised Manuscript: October 6, 2011
Manuscript Accepted: October 6, 2011
Published: December 2, 2011

Citation
Mohesh Moothanchery, Izabela Naydenova, Svetlana Mintova, and Vincent Toal, "Nanozeolites doped photopolymer layers with reduced shrinkage," Opt. Express 19, 25786-25791 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-25-25786


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Biles, “Holographic color filters for LCDs,” SID Int. Symp. Dig. Technical Papers25, 403–406 (1994).
  2. A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt.35(14), 2389–2398 (1996). [CrossRef] [PubMed]
  3. U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng.32(8), 1839–1847 (1993). [CrossRef]
  4. I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle doped photopolymer,” Proc. SPIE6252, 625206 (2006). [CrossRef]
  5. P. Hemmer, S. Shahriar, J. Ludman, and H. J. Caulfield, “Holographic optical memories,” in Holography for the New Millennium, J. Ludman, H. J. Caulfield, and J. Riccobono, eds. (Springer, 2002), pp. 179–189.
  6. D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett.14(5), 159–160 (1969). [CrossRef]
  7. K. Matyjaszewski and T. P. Davis, Handbook of Radical Polymerization (Wiley, 2002).
  8. S.-J. Luo, G.-D. Liu, Q.-S. He, M.-X. Wu, G.-F. Jin, M.-Q. Shi, T. Wang, and F.-P. Wu, “Holographic grating formation in dry photopolymer film with shrinkage,” Chin. Phys.13(9), 1428–1431 (2004). [CrossRef]
  9. O. Sakhno, L. Goldenberg, J. Stumpe, and T. Smirnova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology18(10), 105704 (2007). [CrossRef]
  10. R. A. Vaia, C. L. Dennis, L. V. Natarajan, V. P. Tondiglia, D. W. Tomlin, and T. J. Bunning, “One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization, A generic technique,” Adv. Mater. (Deerfield Beach Fla.)13(20), 1570 (2001). [CrossRef]
  11. I. Naydenova and V. Toal, “Nanoparticle doped photopolymers for holographic applications” in Ordered porous Solids, V. Valtchev, S. Mintova, and M. Tsapatsis, eds. (Elsevier, 2008)
  12. N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer layers,” Appl. Phys. Lett.81(22), 4121–4123 (2002). [CrossRef]
  13. C. Sánchez, M. J. Escuti, C. van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer holographic recording,” Adv. Funct. Mater.15(10), 1623–1629 (2005). [CrossRef]
  14. S. Martin, C. A. Feely, and V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt.36(23), 5757–5768 (1997). [CrossRef] [PubMed]
  15. I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE6252, 625206 (2006). [CrossRef]
  16. T. Babeva, R. Todorov, S. Mintova, T. Yovcheva, I. Naydenova, and V. Toal, “Optical properties of silica MFI doped acrylamide-based photopolymer,” J. Opt. A, Pure Appl. Opt.11(2), 024015 (2009). [CrossRef]
  17. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48(9), 2909 (1969).
  18. H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt.7(5), 255–260 (2005). [CrossRef]
  19. J. T. Gallo and C. M. Verber, “Model for the effects of material shrinkage on volume holograms,” Appl. Opt.33(29), 6797–6804 (1994). [CrossRef] [PubMed]
  20. A. Beléndez, I. Pascual, and A. Fimia, “Model for analyzing the effects of processing on recording material in thick holograms,” J. Opt. Soc. Am. A9(7), 1214–1223 (1992). [CrossRef]
  21. I. Naydenova, E. Leite, T. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerizable nanocomposites containing nanosized molecular sieves,” J. Opt.13(4), 044019 (2011). [CrossRef]
  22. M. Moothanchery, I. Naydenova, and V. Toal, “Study of the shrinkage caused by holographic grating formation in acrylamide based photopolymer film,” Opt. Express19(14), 13395–13404 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited