OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 26 — Dec. 12, 2011
  • pp: B415–B420

40nm wavelength tunable gain-switched optical comb source

Rui Zhou, Sylwester Latkowski, John O’Carroll, Richard Phelan, Liam P. Barry, and Prince Anandarajah  »View Author Affiliations

Optics Express, Vol. 19, Issue 26, pp. B415-B420 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (899 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A wavelength tunable optical comb is generated based on the gain-switching of an externally seeded Fabry-Pérot laser diode. The comb consists of about eight clearly resolved 10GHz coherent sidebands within 3dB spectral envelope peak and is tunable over the entire C-band (1530 to 1570nm). The optical linewidth of the individual comb tones is measured to be lower than 100kHz, and the RIN of the individually filtered comb tones (<-120dB/Hz) is shown to be comparable to the entire unfiltered comb (<-135dB/Hz). Besides, expansion of the tunable gain switched comb is achieved with the aid of an optical phase modulator, resulting in near doubling of the number of comb tones.

© 2011 OSA

OCIS Codes
(140.3520) Lasers and laser optics : Lasers, injection-locked
(250.4110) Optoelectronics : Modulators

ToC Category:
Waveguide and Opto-Electronic Devices

Original Manuscript: September 30, 2011
Revised Manuscript: October 23, 2011
Manuscript Accepted: October 25, 2011
Published: November 21, 2011

Virtual Issues
European Conference on Optical Communication 2011 (2011) Optics Express

Rui Zhou, Sylwester Latkowski, John O’Carroll, Richard Phelan, Liam P. Barry, and Prince Anandarajah, "40nm wavelength tunable gain-switched optical comb source," Opt. Express 19, B415-B420 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Desurvire, “Capacity demand and technology challenges for lightwave systems in the next two decades,” J. Lightwave Technol. 24(12), 4697–4710 (2006). [CrossRef]
  2. A. Ellis, J. Zhao, and D. Cotter, “Approaching the Non-Linear Shannon Limit,” J. Lightwave Technol. 28(4), 423–433 (2010). [CrossRef]
  3. P. J. Winzer and R.-J. Essiambre, “Advanced Modulation Formats for High-Capacity Optical Transport Networks,” J. Lightwave Technol. 24(12), 4711–4728 (2006). [CrossRef]
  4. M. Nakazawa, M. Yoshida, K. Kasai, and J. Hongou, “20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilized laser,” Electron. Lett. 42(12), 710–712 (2006). [CrossRef]
  5. A. Sano, Y. Takatori, and Y. Miyamoto, “No-Guard-Interval Coherent Optical OFDM for 100-Gb/s/ch Long-Haul Transmission Systems,” OFC, OTuO3 (2009).
  6. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008). [CrossRef] [PubMed]
  7. A. Lowery and J. Armstrong, “Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems,” Opt. Express 14(6), 2079–2084 (2006). [CrossRef] [PubMed]
  8. S. Jansen, I. Morita, N. Takeda, and H. Tanaka, “20-Gb/s OFDM transmission over 4,160-km SSMF enabled by RF-pilot tone phase noise compensation,” OFC, PDP 15 (2007).
  9. A. Akrout, A. Shen, R. Brenot, F. Van Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane and G-H. Duan, “Error-free transmission of 8 WDM channels at 10 Gbit/s using comb generation in a quantum dash based mode-locked laser,” ECOC, Th3.D.4, (2008).
  10. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43(19), 1039–1040 (2007). [CrossRef]
  11. T. Sakamoto, T. Kawanishi and M. Izutsu, “19x10-GHz Electro-Optic Ultra-Flat Frequency Comb Generation Only Using Single Conventional Mach-Zehnder Modulator”, CLEO, CMAA5, (2006).
  12. T. Sakamoto, T. Yamamoto, K. Kurokawa, and S. Tomita, “DWDM transmission in O-band over 24 km PCF using optical frequency comb based multicarrier source,” Electron. Lett. 45(16), 850–851 (2009). [CrossRef]
  13. I. Gheorma and G. Gopalakrishnan, “Flat Frequency Comb Generation with an Integrated Dual-Parallel Modulator,” IEEE Photon. Technol. Lett. 19(13), 1011–1013 (2007). [CrossRef]
  14. S. Chandrasekhar, X. Liu, B. Zhu, and D. Peckham, “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” ECOC. PD2.6, (2009).
  15. S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photon. Technol. Lett. 11(5), 551–553 (1999). [CrossRef]
  16. A. Clarke, P. Anandarajah, and L. P. Barry, “Generation of Widely Tunable Picosecond Pulses with Large SMSR by Externally Injecting a Gain Switched Dual Laser Source,” IEEE Photon. Technol. Lett. 16(10), 2344–2346 (2004). [CrossRef]
  17. P. M. Anandarajah, K. Shi, J. O’Carroll, A. Kaszubowska, R. Phelan, L. P. Barry, A. D. Ellis, P. Perry, D. Reid, B. Kelly, and J. O’Gorman, “Phase Shift Keyed Systems based on a Gain Switched Laser Transmitter,” Opt. Express 17(15), 12668–12677 (2009). [CrossRef] [PubMed]
  18. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980). [CrossRef]
  19. P. Gallion, H. Nakajima, G. Debarge, and C. Chabran, “Contribution of spontaneous emission to the linewidth of an injection-locked semiconductor laser,” Electron. Lett. 21(14), 626–628 (1985). [CrossRef]
  20. Eagleyard Photonics, “Relative Intensity Noise of Distributed Feedback Lasers”, http://www.eagleyard.com/fileadmin/downloads/app_notes/App_Note_RIN_1-5.pdf
  21. Y. Ben M’Sallem, Q. T. Le, L. Bramerie, Q.-T. Nguyen, E. Borgne, P. Besnard, A. Shen, F. Lelarge, S. LaRochelle, L. A. Rusch, and J.-C. Simon, “Quantum-Dash Mode-Locked Laser as a Source for 56-Gb/s DQPSK Modulation in WDM Multicast Applications,” IEEE Photon. Technol. Lett. 23(7), 453–455 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited