OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 26 — Dec. 12, 2011
  • pp: B459–B470

Optical frequency tripling with improved suppression and sideband selection

Manoj P. Thakur, Maria C.R. Medeiros, Paula Laurêncio, and John E. Mitchell  »View Author Affiliations


Optics Express, Vol. 19, Issue 26, pp. B459-B470 (2011)
http://dx.doi.org/10.1364/OE.19.00B459


View Full Text Article

Acrobat PDF (2903 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel optical dispersion tolerant millimetre-wave radio-over-fibre system using optical frequency tripling technique with enhanced and selectable sideband suppression is demonstrated. The implementation utilises cascaded optical modulators to achieve either an optical single sideband (OSSB) or double sideband-suppressed carrier (DSB-SC) signal with high sideband suppression. Our analysis and simulation results indicate that the achievable suppression ratio of this configuration is only limited by other system factors such as optical noise and drifting of the operational conditions. The OSSB transmission system performance is assessed experimentally by the transport of 4 WiMax channels modulating a 10 GHz optical upconverted RF carrier as well as for optical frequency doubling and tripling. The 10 GHz and tripled carrier at 30 GHz are dispersion tolerant resulting both in an average relative constellation error (RCE) of −28.7 dB after 40 km of fibre.

© 2011 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(060.4510) Fiber optics and optical communications : Optical communications
(060.5060) Fiber optics and optical communications : Phase modulation
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.7220) Nonlinear optics : Upconversion
(350.4010) Other areas of optics : Microwaves
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Access Networks and LAN

History
Original Manuscript: September 30, 2011
Revised Manuscript: October 29, 2011
Manuscript Accepted: November 2, 2011
Published: November 22, 2011

Virtual Issues
European Conference on Optical Communication 2011 (2011) Optics Express

Citation
Manoj P. Thakur, Maria C.R. Medeiros, Paula Laurêncio, and John E. Mitchell, "Optical frequency tripling with improved suppression and sideband selection," Opt. Express 19, B459-B470 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-26-B459


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol.24(12), 4628–4641 (2006). [CrossRef]
  2. D. Y. Kim, M. Pelusi, Z. Ahmed, D. Novak, H. F. Liu, and Y. Ogawa, “Ultrastable Millimeter-Wave Signal Generation Using Hybrid Modelocking of a Monolithic DBR Laser,” Electron. Lett.31(9), 733–734 (1995). [CrossRef]
  3. J. J. Oreilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical-Generation of Very Narrow Linewidth Millimeter-Wave Signals,” Electron. Lett.28, 2309–2311 (1992).
  4. G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech.45(8), 1410–1415 (1997). [CrossRef]
  5. M. Weiß, M. Huchard, A. Stöhr, B. Charbonnier, S. Fedderwitz, and D. S. Jäger, “60-GHz Photonic Millimeter-Wave Link for Short- to Medium-Range Wireless Transmission Up to 12.5 Gb/s,” J. Lightwave Technol.26(15), 2424–2429 (2008). [CrossRef]
  6. H. C. Chien, A. Chowdhury, Z. Jia, Y. T. Hsueh, and G. K. Chang, “60 GHz millimeter-wave gigabit wireless services over long-reach passive optical network using remote signal regeneration and upconversion,” Opt. Express17(5), 3016–3024 (2009). [CrossRef] [PubMed]
  7. M. Mohamed, X. Zhang, B. Hraimel, and K. Wu, “Analysis of frequency quadrupling using a single Mach-Zehnder modulator for millimeter-wave generation and distribution over fiber systems,” Opt. Express16(14), 10786–10802 (2008). [CrossRef] [PubMed]
  8. J. X. Ma, X. J. Xin, J. Yu, C. X. Yu, K. R. Wang, H. Y. Huang, and L. Rao, “Optical millimeter wave generated by octupling the frequency of the local oscillator,” J. Opt. Netw.7(10), 837–845 (2008). [CrossRef]
  9. M. Mohamed, X. Zhang, B. Hraimel, and K. Wu, “Analysis of frequency quadrupling using a single Mach-Zehnder modulator for millimeter-wave generation and distribution over fiber systems,” Opt. Express16(14), 10786–10802 (2008). [CrossRef] [PubMed]
  10. C. T. Lin, J. Chen, S. P. Dai, P. C. Peng, and S. Chi, “Impact of Nonlinear Transfer Function and Imperfect Splitting Ratio of MZM on Optical Up-Conversion Employing Double Sideband With Carrier Suppression Modulation,” J. Lightwave Technol.26(15), 2449–2459 (2008). [CrossRef]
  11. P. Laurêncio, H. Vargues, I. Fortes, R. Avo, and M. C. R. Medeiros, “Dispersion Robustness of Millimeter Waves Generated by Up-Conversion Strategies,” Fiber Integr. Opt.29(6), 441–452 (2010). [CrossRef]
  12. R. Avo, P. Laurencio, and M. C. R. Medeiros, “Comparative Study of Optical Up-Conversion Schemes,” Icton: 2011 13th International Conference on Transparent Optical Networks, 1–4 (2011).
  13. T. Kawanishi, T. Sakamoto, M. Tsuchiya, M. Izutsu, S. Mori, and K. Higuma, “70dB extinction-ratio LiNbO3 optical intensity modulator for two-tone lightwave generation,” Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, Vols 1–6, 443–445 (2006).
  14. Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High Extinction-Ratio Integrated Mach-Zehnder Modulator With Active Y-Branch for Optical SSB Signal Generation,” IEEE Photon. Tech Lett.22(12), 941–943 (2010). [CrossRef]
  15. C. T. Lin, P. T. Shih, J. Chen, W. Jiang, S. P. Dai, P. C. Peng, Y. L. Ho, and S. Chi, “Optical Millimeter-Wave Up-Conversion Employing Frequency Quadrupling Without Optical Filtering,” IEEE Trans. Microwave Theory Tech.57(8), 2084–2092 (2009). [CrossRef]
  16. G. de Valicourt, M. A. Violas, D. Wake, F. van Dijk, C. Ware, A. Enard, D. Maké, Z. Liu, M. Lamponi, G.-H. Duan, and R. Brenot, “Radio-Over-Fiber Access Network Architecture Based on New Optimized RSOA Devices With Large Modulation Bandwidth and High Linearity,” IEEE Trans. Microwave Theory Tech.58(11), 3248–3258 (2010). [CrossRef]
  17. B. Davies and J. Conradi, “Hybrid modulator structures for subcarrier and harmonic subcarrier optical single sideband,” IEEE Photon. Tech Lett.10(4), 600–602 (1998). [CrossRef]
  18. D. Pareit, V. Petrov, B. Lannoo, E. Tanghe, W. Joseph, I. Moerman, P. Demeester, and L. Martens, “A Throughput Analysis at the MAC Layer of Mobile WiMAX, ” IEEE Wireless Communications and Networking Conference, 1–6 (2010).
  19. R. T. Logan., “All-optical heterodyne RF signal generation using a mode-locked-laser frequency comb: theory and experiments,” IEEE MTT-S Int. Microw. Symp. Dig.3, 11–16 (2000).
  20. S. Jansen, I. Morita, and H. Tanaka, “Carrier-to-signal power ratio in fiber-optic SSB-OFDM transmission systems”, IEICE General Conference, Nagoya, Japan, (Institute of Electronics, Information and Communication Engineers, paper B-10–24, (2007).
  21. J. James, P. Shen, A. Nkansah, X. Liang, and N. J. Gomes, “Nonlinearity and Noise Effects in Multi-Level Signal Millimeter-Wave Over Fiber Transmission Using Single and Dual Wavelength Modulation,” IEEE Trans. Microwave Theory Tech.58(11), 3189–3198 (2010). [CrossRef]
  22. L. Xin, H. X. You, G. Ying, L. S. Feng, and Z. M. Shan, “Phase noise floor suppression of the output carrier from double sideband-carrier suppressed modulation system,” Sci. China54, 1312–1320 (2011).
  23. J. Armstrong, “OFDM for Optical Communications,” J. Lightwave Technol.27(3), 189–204 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited